- 窄表:严格按照三范式设计的表,没有多余字段。每个表的字段对应实体的一个字段,复杂对象需要联表才能获取到。
- 宽表:反范式设计,查询不需要联表就可以获得所有字段,查询的速度较快。
数据库设计,基本上按照规范来不会有什么大问题。但是当我们做的项目多了,代码写的多了之后,总会感觉到数据库设计有很多需要优化的地方。最近维护老项目的代码,项目的数据库设计导致有些功能相当复杂,优化起来也很麻烦。
就比如一些日志表被拆成了窄表,可能能节省一部分空间。但是用起来真的是相当麻烦,因为日志一般都是用来分析的,查询功能很多,查询的条件也很多。在查询的时候要进行联表,每次功能改动,都要维护SQL,而且在后期数据量变大了之后查询速度就很慢,优化起来相当费劲。
如果设计的时候设计成宽表就会很方便,首先是查询的SQL会变得很简单,如果使用了mybatis-plus可能一句SQL都不用写。然后就是不需要联表查询了,这样查询速度会快很多。
可能有些人会担心直接存一张宽表,数据就不是关联表的实时数据了。首先我们应该考虑一下,这个表是否真的需要实时的数据,毕竟日志表其实记录的是历史数据。然后可以考虑一下关联的表中的数据更新频率如何,如果更新频率很低,也可以把改动广播到日志表中。特别是一些字典,直接存真的很方便。
这里科普两个名词
- OLTP(联机事务处理):业务系统的修改操作的并发量比较大,这时候窄表操作起来比较方便,能支持的并发量也比较大。
- OLAP(联机分析处理):业务系统的查询功能比较多,这时候使用宽表查询效率比较高。
当然一般来说,我们的业务系统中两种业务功能基都是存在的。这时候,我们就要考虑某些表是不是应当首先支持OLTP的业务,或者优先支持OLAP的业务。在并发量和数据量都比较小的情况下,我们选择宽表或窄表区别都不大,两种业务都能支持。在并发量或数据量比较大的时候,这时候我们就要考虑,那种业务需要优先支持,哪种业务优先级可以放低。
还有种情况,两种业务优先级都很高,两种业务都需要支持。这时候,就需要额外的设计了。我们可以引入消息中间件同时建立窄表和宽表支持两种业务,或者使用内存型的数据库或搜索引擎提高处理速度。也可以依靠数据中心支持分析业务。
2204

被折叠的 条评论
为什么被折叠?



