CSDN的latex和markdown用着很不方便,于是就直接放上一张图。
此题目涉及到:拆位求贡献。
先来看一个经典例题:Sum of XOR of all pairs
给定数组
a
\ a
a,要求
∑
i
=
1
n
∑
j
=
i
n
(
a
i
⊕
a
j
)
\ \sum_{i=1}^{n} \sum_{j=i}^{n} (a_i \oplus a_j)
∑i=1n∑j=in(ai⊕aj)。暴力写法
O
(
n
2
)
\ O( n^{2} )
O(n2),不再叙述。
考虑异或性质:无进位加法,不同为1,意味着每一位都相互独立。看式子,相当于
∑
C
n
2
\ \sum C_{n}^{2}
∑Cn2,即每次选取两个数异或的结果,最后加起来(当i=j的时候 结果为0,可以忽略)。
考虑二进制第i位:假设有n个数,其中x个数在第i位是1,n-x个数在第i位是0,那么
最后结果为1的可能总共有x*(n-x)个,共贡献了x*(n-x)*2^i。
故只需从第0位开始考虑到第30位,每次都遍历一遍数组,记录这一位1的个数。
时间复杂度
O
(
30
∗
n
)
\ O(30*n)
O(30∗n)。
代码如下:
//{ Driver Code Starts
// An efficient C++ program to compute
// sum of bitwise OR of all pairs
#include <bits/stdc++.h>
using namespace std;
// } Driver Code Ends
class Solution {
public:
// Returns sum of bitwise XOR of all pairs
long long int sumXOR(int arr[], int n) {
auto q = [](int a, int b) -> long long {//无用的快速幂
long long ans = 1;
while (b) {
if (b & 1) ans *= a;
a *= a;
b >>= 1;
}
return ans;
};
vector<vector<long long>> a(n + 1, vector<long long>(32, 0));
//前缀和记录1的个数,其实不用也可以。
for (long long i = 0; i <= 30; i++) {
for (long long j = 1; j <= n; j++) {
a[j][i] = a[j - 1][i] + ((arr[j - 1] >> i) & 1);
}
}
long long ans = 0;
for (long long i = 1; i <= n; i++) {
for (long long j = 0; j <= 30; j++) {
if ((arr[i - 1] >> j) & 1) {
ans += (n - i - a[n][j] + a[i][j]) * (1 << j);
} else {
ans += (a[n][j] - a[i][j]) * (1 << j);
}
}
}
return ans;
}
};
//{ Driver Code Starts.
int main()
{
int t;
cin>>t;
while(t--)
{
int n ;
cin>>n;
int arr[n+1];
for( int i=0;i<n;i++)
cin>>arr[i];
Solution ob;
cout<<ob.sumXOR(arr, n)<<endl;
cout << "~" << "\n";
}
return 0;
}
// } Driver Code Ends
借用一下雨姐的图。
现在来看牛客这道题:同样可以考虑拆位算贡献。考虑第i位的时候:假设竖着的为a1、a2…an第i位横着的为b。
那么每次询问其实就是一个斜边为主对角线的等腰直角三角形,即图中的A部分。
我们可以发现,刚刚那个Sum of XOR of all pairs例题其实就是最大的那个上三角形。
但是由于这个题是多次询问,每次都这么求时间复杂度过不去。观察可得:A=C-D-B
C怎么求呢?用最大的三角形减去下面的三角形。看到这里可以想到用前缀和预处理。
设a[i][j]代表ai二进制的第j位。如果这一位为0,那么我们需要找到同行的b中这一位为1的个数,反之找0的个数。
到这里,我们基本思路都有了。设f[i][j]代表第j位上半部分梯形区域有效的数。
则:
for (int j = 0; j <= 30; j++) {
for (int i = 1; i <= n; i++) {
if ((a[i] >> j) & 1) {//为1,找0的个数
f[i][j] = f[i - 1][j] + (n + 1 - i - (bpre[n][j] - bpre[i - 1][j]));
} else {//为0,找1的个数
f[i][j] = f[i - 1][j] + (bpre[n][j] - bpre[i - 1][j]);
}
}
}
那么对于每次询问:给定l,r,通过前缀和可以求出来C-D为:
f[r][i] - f[l - 1][i]
而B为
int temp = (apre[r][i] - apre[l - 1][i]) * (n - r - bpre[n][i] + bpre[r][i]) +
(len - apre[r][i] + apre[l - 1][i]) * (bpre[n][i] - bpre[r][i]);
//a中0的个数与b中1的个数的乘积加上a中1的个数与b中0的个数的乘积。
最终ac代码:
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define uint unsigned int
#define pii pair<int,int>
const int mod = 1e9 + 7;
int dx[] = {1,
0,
-1,
0};
int dy[] = {0, 1, 0, -1};
void solve() {
int n;
int q;
cin >> n >> q;
vector<int> a(n + 1);
vector<int> b(n + 1);
for (int i = 1; i <= n; i++) cin >> a[i];
for (int i = 1; i <= n; i++) cin >> b[i];
vector<vector<int>> apre(n + 1, vector<int>(31, 0));
vector<vector<int>> bpre(n + 1, vector<int>(31, 0));
for (int i = 0; i <= 30; i++) {
for (int j = 1; j <= n; j++) {
apre[j][i] = apre[j - 1][i] + ((a[j] >> i) & 1);
bpre[j][i] = bpre[j - 1][i] + ((b[j] >> i) & 1);
}
}
vector<vector<int>> f(n + 1, vector<int>(32, 0));
for (int j = 0; j <= 30; j++) {
for (int i = 1; i <= n; i++) {
if ((a[i] >> j) & 1) {
f[i][j] = f[i - 1][j] + (n + 1 - i - (bpre[n][j] - bpre[i - 1][j]));
} else {
f[i][j] = f[i - 1][j] + (bpre[n][j] - bpre[i - 1][j]);
}
}
}
while (q--) {
int l, r;
cin >> l >> r;
int len = r - l + 1;
int ans = 0;
for (int i = 0; i <= 30; i++) {
int temp = (apre[r][i] - apre[l - 1][i]) * (n - r - bpre[n][i] + bpre[r][i]) +
(len - apre[r][i] + apre[l - 1][i]) * (bpre[n][i] - bpre[r][i]);
ans = (ans % mod + ((f[r][i] - f[l - 1][i] - temp) % mod * ((1ll << i) % mod))) % mod;
}
cout << ans << endl;
}
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(nullptr), cout.tie(nullptr);
int T = 1;
cin >> T;
while (T--) {
solve();
}
}