2025牛客寒假算法基础集训营4 L题 XOR-Triangle 异或三角形题解。(二进制拆位算贡献相关题目)


CSDN的latex和markdown用着很不方便,于是就直接放上一张图。

此题目涉及到:拆位求贡献。

先来看一个经典例题:Sum of XOR of all pairs
给定数组   a \ a  a,要求   ∑ i = 1 n ∑ j = i n ( a i ⊕ a j ) \ \sum_{i=1}^{n} \sum_{j=i}^{n} (a_i \oplus a_j)  i=1nj=in(aiaj)。暴力写法   O ( n 2 ) \ O( n^{2} )  O(n2),不再叙述。
考虑异或性质:无进位加法,不同为1,意味着每一位都相互独立。看式子,相当于   ∑ C n 2 \ \sum C_{n}^{2}  Cn2,即每次选取两个数异或的结果,最后加起来(当i=j的时候 结果为0,可以忽略)。
考虑二进制第i位:假设有n个数,其中x个数在第i位是1,n-x个数在第i位是0,那么
最后结果为1的可能总共有x*(n-x)个,共贡献了x*(n-x)*2^i。
故只需从第0位开始考虑到第30位,每次都遍历一遍数组,记录这一位1的个数。
时间复杂度   O ( 30 ∗ n ) \ O(30*n)  O(30n)
代码如下:

//{ Driver Code Starts
// An efficient C++ program to compute 
// sum of bitwise OR of all pairs
#include <bits/stdc++.h>
using namespace std;


// } Driver Code Ends



class Solution {
public:
    // Returns sum of bitwise XOR of all pairs
    long long int sumXOR(int arr[], int n) {
            auto q = [](int a, int b) -> long long {//无用的快速幂
                long long ans = 1;
                while (b) {
                    if (b & 1) ans *= a;
                    a *= a;
                    b >>= 1;
                }
                return ans;
            };
    
            vector<vector<long long>> a(n + 1, vector<long long>(32, 0));
            //前缀和记录1的个数,其实不用也可以。
            for (long long i = 0; i <= 30; i++) {
                for (long long j = 1; j <= n; j++) {
                a[j][i] = a[j - 1][i] + ((arr[j - 1] >> i) & 1);
            }
        }
    
            long long ans = 0;
            for (long long i = 1; i <= n; i++) {
                for (long long j = 0; j <= 30; j++) {
    
                    if ((arr[i - 1] >> j) & 1) {
                        ans += (n - i - a[n][j] + a[i][j]) * (1 << j);
                    } else {
                        ans += (a[n][j] - a[i][j]) * (1 << j);
    
                     }
    
            }
        }
            return ans;
    }
};


//{ Driver Code Starts.


int main()
{
	int t;
	cin>>t;
	while(t--)
	{
	 int n ;
	 cin>>n;
	 int arr[n+1];
	 for( int i=0;i<n;i++)
	    cin>>arr[i];
	 Solution ob;
	 cout<<ob.sumXOR(arr, n)<<endl;
	
cout << "~" << "\n";
}	
	return 0;
}

// } Driver Code Ends

借用一下雨姐的图。在这里插入图片描述

现在来看牛客这道题:同样可以考虑拆位算贡献。考虑第i位的时候:假设竖着的为a1、a2…an第i位横着的为b。
那么每次询问其实就是一个斜边为主对角线的等腰直角三角形,即图中的A部分。
我们可以发现,刚刚那个Sum of XOR of all pairs例题其实就是最大的那个上三角形。
但是由于这个题是多次询问,每次都这么求时间复杂度过不去。观察可得:A=C-D-B
C怎么求呢?用最大的三角形减去下面的三角形。看到这里可以想到用前缀和预处理。
设a[i][j]代表ai二进制的第j位。如果这一位为0,那么我们需要找到同行的b中这一位为1的个数,反之找0的个数。
到这里,我们基本思路都有了。设f[i][j]代表第j位上半部分梯形区域有效的数。
则:

for (int j = 0; j <= 30; j++) {
        for (int i = 1; i <= n; i++) {
            if ((a[i] >> j) & 1) {//为1,找0的个数
                f[i][j] = f[i - 1][j] + (n + 1 - i - (bpre[n][j] - bpre[i - 1][j]));
            } else {//为0,找1的个数
                f[i][j] = f[i - 1][j] + (bpre[n][j] - bpre[i - 1][j]);
            }
        }
    }

那么对于每次询问:给定l,r,通过前缀和可以求出来C-D为:

f[r][i] - f[l - 1][i]

而B为

int temp = (apre[r][i] - apre[l - 1][i]) * (n - r - bpre[n][i] + bpre[r][i]) +
                      (len - apre[r][i] + apre[l - 1][i]) * (bpre[n][i] - bpre[r][i]);
                      //a中0的个数与b中1的个数的乘积加上a中1的个数与b中0的个数的乘积。

最终ac代码:

#include <bits/stdc++.h>

using namespace std;
#define int long long
#define uint unsigned int
#define pii pair<int,int>
const int mod = 1e9 + 7;


int dx[] = {1,
            0,
            -1,
            0};
int dy[] = {0, 1, 0, -1};


void solve() {
    int n;
    int q;
    cin >> n >> q;
    vector<int> a(n + 1);
    vector<int> b(n + 1);
    for (int i = 1; i <= n; i++) cin >> a[i];
    for (int i = 1; i <= n; i++) cin >> b[i];

    vector<vector<int>> apre(n + 1, vector<int>(31, 0));
    vector<vector<int>> bpre(n + 1, vector<int>(31, 0));

    for (int i = 0; i <= 30; i++) {
        for (int j = 1; j <= n; j++) {
            apre[j][i] = apre[j - 1][i] + ((a[j] >> i) & 1);
            bpre[j][i] = bpre[j - 1][i] + ((b[j] >> i) & 1);

        }
    }

    vector<vector<int>> f(n + 1, vector<int>(32, 0));
    for (int j = 0; j <= 30; j++) {
        for (int i = 1; i <= n; i++) {
            if ((a[i] >> j) & 1) {
                f[i][j] = f[i - 1][j] + (n + 1 - i - (bpre[n][j] - bpre[i - 1][j]));
            } else {
                f[i][j] = f[i - 1][j] + (bpre[n][j] - bpre[i - 1][j]);
            }
        }
    }


    while (q--) {
        int l, r;
        cin >> l >> r;
        int len = r - l + 1;
        int ans = 0;
        for (int i = 0; i <= 30; i++) {
            int temp = (apre[r][i] - apre[l - 1][i]) * (n - r - bpre[n][i] + bpre[r][i]) +
                       (len - apre[r][i] + apre[l - 1][i]) * (bpre[n][i] - bpre[r][i]);
            ans = (ans % mod + ((f[r][i] - f[l - 1][i] - temp) % mod * ((1ll << i) % mod))) % mod;
        }
        cout << ans << endl;
    }

}


signed main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr), cout.tie(nullptr);

    int T = 1;
    cin >> T;
    while (T--) {
        solve();
    }
}
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值