大致题意:给定一棵有根树,每个节点有权值。如果一棵子树包含的所有节点(除了子树的根)均为正数,我们可以进行如下操作:使得子树的根权值+1,子树中所有节点-1。每次操作之后,节点值需为非负。现求在不限次数操作的条件下根节点的最大权值可以为多少。
解
考虑一棵树,假设我们要在根节点1加上x,那么对于子树中所有的节点都要求加x。
此时变成一个子问题。对于2号节点,如果本身权值就大于等于x,那么对于其子树中的所有节点,仍然只需要要求加x;如果权值小于x,那么还需要针对2号节点操作使得其权值变成等于x,操作x−val2x-val_2x−val2次。而新操作的次数又会要求子树中的节点权值再次下降x−val2x-val_2x−val2,最终新的对子树节点的权值要求变成了:x+x−val2x+x-val_2x+x−val2。由此我们发现,可以进行dfs来判断xxx是否合法。而我们要求xxx的最大值。首先x=0x=0x=0一定是合法的,其次,如果x=2x=2x=2合法,那么x=1x=1x=1也一定是合法的。由此发现可以二分一下xxx。
现在思路出来了:左边界为0,右边界为max(vali)max(val_i)max(vali),然后进行二分并检查。
有一个点要提一下:如果每次都判断到叶子节点才返回falsefalsefalse,会爆longlonglong longlonglong的。
因为最极端的情况下,每次要求权值往下都∗2*2∗2。而由于题目上valival_ivali最大等于1e91e91e9,所以在val>1e9val>1e9val>1e9的时候我们可以直接返回falsefalsefalse。
code
void solve() {
int n;
cin >> n;
vector<vector<int>> g(n + 1);
vector<int> a(n + 1);
int ma = 0;
for (int i = 1; i <= n; i++) {
cin >> a[i];
ma = max(ma, a[i]);
}
for (int i = 2; i <= n; i++) {
int x;
cin >> x;
g[x].push_back(i);
}
function<bool(int, int)> dfs = [&](int val, int node) {
if (val > 1e9) return false;
if (node == 1) {
bool ans = 1;
for (auto &ne: g[node]) {
ans &= dfs(val, ne);
}
return ans;
}
if (g[node].empty()) {
if (a[node] >= val) return true;
else return false;
}
if (a[node] >= val) {
bool ans = true;
for (auto &ne: g[node]) {
ans = ans & dfs(val, ne);
}
return ans;
} else {
bool ans = true;
for (auto &ne: g[node]) {
ans = ans & dfs(val + val - a[node], ne);
}
return ans;
}
};
int l = 0, r = ma;
if (l >= r) cout << a[1] << endl;
else {
int ans = 0;
while (l <= r) {
int mid = (l + r + 1) >> 1;
if (dfs(mid, 1)) {
ans = max(ans, mid);
l = mid + 1;
} else {
r = mid - 1;
}
}
cout << a[1] + ans << endl;
}
}