Educational Codeforces Round 168 (Rated for Div. 2) D题题解记录

大致题意:给定一棵有根树,每个节点有权值。如果一棵子树包含的所有节点(除了子树的根)均为正数,我们可以进行如下操作:使得子树的根权值+1,子树中所有节点-1。每次操作之后,节点值需为非负。现求在不限次数操作的条件下根节点的最大权值可以为多少。

在这里插入图片描述
考虑一棵树,假设我们要在根节点1加上x,那么对于子树中所有的节点都要求加x。
此时变成一个子问题。对于2号节点,如果本身权值就大于等于x,那么对于其子树中的所有节点,仍然只需要要求加x;如果权值小于x,那么还需要针对2号节点操作使得其权值变成等于x,操作x−val2x-val_2xval2次。而新操作的次数又会要求子树中的节点权值再次下降x−val2x-val_2xval2,最终新的对子树节点的权值要求变成了:x+x−val2x+x-val_2x+xval2。由此我们发现,可以进行dfs来判断xxx是否合法。而我们要求xxx的最大值。首先x=0x=0x=0一定是合法的,其次,如果x=2x=2x=2合法,那么x=1x=1x=1也一定是合法的。由此发现可以二分一下xxx
现在思路出来了:左边界为0,右边界为max(vali)max(val_i)max(vali),然后进行二分并检查。
有一个点要提一下:如果每次都判断到叶子节点才返回falsefalsefalse,会爆longlonglong longlonglong的。
因为最极端的情况下,每次要求权值往下都∗2*22。而由于题目上valival_ivali最大等于1e91e91e9,所以在val>1e9val>1e9val>1e9的时候我们可以直接返回falsefalsefalse
code

void solve() {
    int n;
    cin >> n;
    vector<vector<int>> g(n + 1);
    vector<int> a(n + 1);
    int ma = 0;
    for (int i = 1; i <= n; i++) {
        cin >> a[i];
        ma = max(ma, a[i]);
    }
    for (int i = 2; i <= n; i++) {
        int x;
        cin >> x;
        g[x].push_back(i);
    }
    function<bool(int, int)> dfs = [&](int val, int node) {
        if (val > 1e9) return false;
        if (node == 1) {
            bool ans = 1;
            for (auto &ne: g[node]) {
                ans &= dfs(val, ne);
            }
            return ans;
        }
        if (g[node].empty()) {
            if (a[node] >= val) return true;
            else return false;
        }
        if (a[node] >= val) {
            bool ans = true;
            for (auto &ne: g[node]) {
                ans = ans & dfs(val, ne);
            }
            return ans;
        } else {
            bool ans = true;
            for (auto &ne: g[node]) {
                ans = ans & dfs(val + val - a[node], ne);
            }
            return ans;
        }
    };
    int l = 0, r = ma;
    if (l >= r) cout << a[1] << endl;
    else {
        int ans = 0;
        while (l <= r) {
            int mid = (l + r + 1) >> 1;
            if (dfs(mid, 1)) {
                ans = max(ans, mid);
                l = mid + 1;
            } else {
                r = mid - 1;
            }
        }
        cout << a[1] + ans << endl;
    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值