2021-06-01

博客主要介绍了HTML基本标签中的标题标签。HTML标题标签有六级,从h1到h6,这是在前端开发中构建网页结构时常用的元素,了解这些标签有助于更好地进行网页内容的组织与呈现。

关于html基本标签的认识
1.标题标签有六级h1~h6,格式为

前面的尖括号代表标签的开始,后面的斜杆那个尖括号代表标签的结束。
2.

:p标签是段落表示的标签。
3. :超链接标签。举例说明, 注意一点,如果你在超链接的时候没有成功,那么加上协议即可,就是加上http即可。
4. :img标签有两个属性,分别是src属性和alt属性,在插入图片,音频这些时会用到该标签。
5
标签是用于分割线,水平线。
6.
标签是显示表格的标签,与该标签相对应的是标签和标签,tr是行标签,td是列标签。
7.标签是换行标签。
8.©代表版权所有字符。
【ACDC微电网的能源管理策略】微电网仿真模型包括光伏发电机、燃料电池系统、超级电容器和直流侧的电池,包括电压源变换器(VSC),用于将微电网的直流侧与交流侧相连接Simulink仿真实现内容概要:本文介绍了一个用于ACDC微电网能源管理策略研究的Simulink仿真模型,该模型集成了光伏发电机、燃料电池系统、超级电容器和直流侧电池等多种分布式能源与储能装置,并通过电压源变换器(VSC)实现微电网直流侧与交流侧的连接。文档重点在于构建包含多能源协调控制与能量管理策略的仿真系统,可用于研究微电网在并网与孤岛模式下的稳定运行、能量优化分配及动态响应特性,体现了对复杂电力电子接口与多源协同控制的建模能力。; 适合人群:电力系统、新能源发电、微电网控制及相关领域的科研人员与工程技术人员,具备一定的MATLAB/Simulink仿真基础和电力电子知识背景;研究生及高年级本科生亦可参考学习。; 使用场景及目标:①开展微电网多能源系统建模与仿真验证;②研究VSC在交直流互联中的控制策略;③设计与优化微电网能量管理策略(EMS);④支持科研项目、课程设计或毕业设计中的系统仿真环节。; 阅读建议:建议结合MATLAB/Simulink环境实际操作,逐步搭建模型并调试各组件参数,重点关注VSC控制逻辑与储能协调机制的设计,同时可拓展加入更多智能优化算法(如PSO、MPC)实现高级能量管理。
你已经成功将 `Date` 列转换为 `datetime64[ns]` 类型,并且输出如下: ``` 0 2021-01-04 1 2021-01-05 2 2021-01-06 3 2021-01-07 4 2021-01-08 Name: Date, dtype: datetime64[ns] ``` ✅ **这说明日期解析完全正确!** 接下来你应该执行: ```python df.set_index('Date', inplace=True) df.sort_index(inplace=True) # 确保时间顺序正确 ``` 然后进入主逻辑,使用我们之前修复过的区间筛选函数(作用于索引)即可正常运行。 --- ### ✅ 当前状态确认清单 | 检查项 | 是否完成 | 说明 | |--------|----------|------| | ✔️ `Date` 列是否为 `datetime64[ns]`? | ✅ 是 | 输出已验证 | | ✔️ 是否设置为索引? | ⚠️ 需手动执行 | 必须调用 `set_index` | | ✔️ 时间是否升序排列? | ⚠️ 建议排序 | 使用 `sort_index()` 更安全 | | ✔️ 区间过滤函数是否作用于 `index`? | ✅ 是 | 否则会出错 | --- ### ✅ 推荐后续代码(确保流程完整) ```python # 设置索引并排序 df.set_index('Date', inplace=True) df.sort_index(inplace=True) # 查看数据类型和前几行 print("Index dtype:", df.index.dtype) print("Data head:") print(df.head()) ``` 此时你的 `df.index` 是一个有序的 `DatetimeIndex`,可以安全用于以下操作: ```python intervals = { 'YTD': lambda idx: idx >= pd.Timestamp(year=idx[-1].year, month=1, day=1), '1Y': lambda idx: idx >= idx[-1] - pd.DateOffset(years=1), '6M': lambda idx: idx >= idx[-1] - pd.DateOffset(months=6), '3M': lambda idx: idx >= idx[-1] - pd.DateOffset(months=3), '1M': lambda idx: idx >= idx[-1] - pd.DateOffset(months=1), } ``` 因为 `idx[-1]` 就是最后一个交易日,比如 `2024-03-28`,它是一个 `pd.Timestamp`,支持 `.year`、`.month` 等属性,不会再报错! --- ### ✅ 示例:查看当前 YTD 起始日 你可以加一段调试代码来验证逻辑是否正确: ```python # 调试:打印各个区间的起始时间(以最后一个日期为基准) last_date = df.index[-1] print(f"最新交易日: {last_date}") print("各区间起始日:") print("YTD:", pd.Timestamp(year=last_date.year, month=1, day=1)) print("1Y: ", last_date - pd.DateOffset(years=1)) print("6M: ", last_date - pd.DateOffset(months=6)) print("3M: ", last_date - pd.DateOffset(months=3)) print("1M: ", last_date - pd.DateOffset(months=1)) ``` 输出示例: ``` 最新交易日: 2024-03-28 各区间起始日: YTD: 2024-01-01 1Y: 2023-03-28 6M: 2023-09-28 3M: 2024-01-28 1M: 2024-02-28 ``` 这些日期就是每个区间的“开始日”,之后用它们做布尔索引就能提取对应时间段的数据。 --- ### ✅ 总结:你现在可以继续了! 只要你完成了以下几步: 1. ✅ 成功将 `Date` 转为 `datetime64[ns]` 2. ✅ 执行了 `df.set_index('Date')` 和 `sort_index()` 3. ✅ 使用基于 `idx`(即 DatetimeIndex)的过滤函数 那么之前的两个错误(`float64 has no attribute year` 和 `>= not supported`)都已彻底解决,现在可以放心运行完整的绩效分析代码。 --- ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值