必记的13个不定积分公式(详细推导)

文章列举了13个重要的积分公式,包括与三角函数、对数、反三角函数相关的积分计算,如cscx、secx、1/(x^2-a^2)等的积分表达,并通过逐步解析展示了如何推导这些公式,强调了记忆这些公式在解决数学问题时的重要性。

常见积分公式

前言

这些公式都是必记的!因为经常在考场上出现,如果现推的话又很容易出错和耗时间,故需要我们深刻地去记忆。
公式推导所得答案不唯一,若想检验答案正确性,可以通过对所得答案进行求导,若求导后的值和原式相同,则答案正确。


1 ∫ c s c x d x = l n ∣ c s c x − c o t x ∣ + C \int cscxdx=ln|cscx-cotx|+C cscxdx=lncscxcotx+C

原式 = ∫ c s c x ( c s c x − c o t x ) c s c x − c o t x d x = ∫ c s c 2 x − c s c x c o t x c s c x − c o t x d x 原式=\int \frac{cscx(cscx-cotx)}{cscx-cotx}dx=\int \frac{csc^2x-cscxcotx}{cscx-cotx}dx 原式=cscxcotxcscx(cscxcotx)dx=cscxcotxcsc2xcscxcotxdx = ∫ 1 c s c x − c o t x d ( c s c x − c o t x ) =\int \frac{1}{cscx-cotx}d(cscx-cotx) =cscxcotx1d(cscxcotx) = l n ∣ c s c x − c o t x ∣ + C =ln|cscx-cotx|+C =lncscxcotx+C

2 ∫ s e c x d x = l n ∣ s e c x + t a n x ∣ + C \int secxdx=ln|secx+tanx|+C secxdx=lnsecx+tanx+C

原式 = ∫ s e c x ( s e c x + t a n x ) s e c x + t a n x d x = ∫ s e c 2 x + s e c x t a n x s e c x + t a n x d x 原式=\int\frac{secx(secx+tanx)}{secx+tanx}dx=\int\frac{sec^2x+secxtanx}{secx+tanx}dx 原式=secx+tanxsecx(secx+tanx)dx=secx+tanxsec2x+secxtanxdx = ∫ d ( t a n x + s e c x ) s e c x + t a n x =\int\frac{d(tanx+secx)}{secx+tanx} =secx+tanxd(tanx+secx) = l n ∣ s e c x + t a n x ∣ + C =ln|secx+tanx|+C =lnsecx+tanx+C

3 ∫ d x x 2 − a 2 = l n ∣ x + x 2 − a 2 ∣ + C \int \frac{dx}{\sqrt{x^2-a^2}}=ln|x+\sqrt{x^2-a^2}|+C x2a2 dx=lnx+x2a2 +C

在这里插入图片描述

注:tant的值可以通过画三角形辅助求解


x = a s e c t x=asect x=asect, 则 d x = a s e c t ⋅ t a n t d t , s e c t = x a , t a n t = x 2 − a 2 a dx=asect·tantdt, sect=\frac{x}{a},tant=\frac{\sqrt{x^2-a^2}}{a} dx=asecttantdt,sect=ax,tant=ax2a2
原式 = ∫ a s e c t ⋅ t a n t d t a 2 s e c 2 t − a 2 = ∫ a s e c t ⋅ t a n t d t a 2 ( s e c 2 t − 1 ) = ∫ s e c t ⋅ t a n t d t t a n t 原式 =\int\frac{asect·tantdt}{\sqrt{a^2sec^2t-a^2}}=\int\frac{asect·tantdt}{\sqrt{a^2(sec^2t-1)}}=\int\frac{sect·tantdt}{tant} 原式=a2sec2ta2 asecttantdt=a2(sec2t1) asecttantdt=tantsecttantdt = ∫ s e c t d t = l n ∣ s e c t + t a n t ∣ + C = l n ∣ x a + x 2 − a 2 a ∣ + C =\int sectdt=ln|sect+tant|+C=ln|\frac{x}{a}+\frac{\sqrt{x^2-a^2}}{a}|+C =sectdt=lnsect+tant+C=lnax+ax2a2 +C 将分母的 a 看成常数 C ,得最终结果: 将分母的a看成常数C,得最终结果: 将分母的a看成常数C,得最终结果: = l n ∣ x + x 2 − a 2 ∣ + C =ln|x+\sqrt{x^2-a^2}|+C =lnx+x2a2 +C


4 ∫ d x a 2 − x 2 = a r c s i n x a + C \int \frac{dx}{\sqrt{a^2-x^2}}=arcsin\frac{x}{a}+C a2x2 dx=arcsinax+C

x = a s i n t , 则 d x = a c o s t d t , t = a r c s i n x a x=asint,则dx=acostdt,t=arcsin\frac{x}{a} x=asint,dx=acostdt,t=arcsinax
原式 = ∫ a c o s t d t a 2 − a 2 s i n 2 t = ∫ a c o s t d t a c o s t 原式=\int\frac{acostdt}{\sqrt{a^2-a^2sin^2t}}=\int\frac{acostdt}{acost} 原式=a2a2sin2t acostdt=acostacostdt = ∫ 1 d t = ∫ t + C =\int1dt=\int t+C =1dt=t+C = a r c s i n x a + C =arcsin\frac{x}{a}+C =arcsinax+C</

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值