常见积分公式
- 前言
- 1 ∫ c s c x d x = l n ∣ c s c x − c o t x ∣ + C \int cscxdx=ln|cscx-cotx|+C ∫cscxdx=ln∣cscx−cotx∣+C
- 2 ∫ s e c x d x = l n ∣ s e c x + t a n x ∣ + C \int secxdx=ln|secx+tanx|+C ∫secxdx=ln∣secx+tanx∣+C
- 3 ∫ d x x 2 − a 2 = l n ∣ x + x 2 − a 2 ∣ + C \int \frac{dx}{\sqrt{x^2-a^2}}=ln|x+\sqrt{x^2-a^2}|+C ∫x2−a2dx=ln∣x+x2−a2∣+C
- 4 ∫ d x a 2 − x 2 = a r c s i n x a + C \int \frac{dx}{\sqrt{a^2-x^2}}=arcsin\frac{x}{a}+C ∫a2−x2dx=arcsinax+C
- 5 ∫ d x x 2 + a 2 = l n ∣ x + x 2 + a 2 ∣ + C \int \frac{dx}{\sqrt{x^2+a^2}}=ln|x+\sqrt{x^2+a^2}|+C ∫x2+a2dx=ln∣x+x2+a2∣+C
- 6 ∫ d x x 2 − a 2 = 1 2 a l n ∣ x − a x + a ∣ + C \int \frac{dx}{x^2-a^2}=\frac{1}{2a}ln|\frac{x-a}{x+a}|+C ∫x2−a2dx=2a1ln∣x+ax−a∣+C
- 7 ∫ d x a 2 + x 2 = 1 a a r c t a n x a + C \int \frac{dx}{a^2+x^2}=\frac{1}{a}arctan\frac{x}{a}+C ∫a2+x2dx=a1arctanax+C
- 8 ∫ 1 1 + e x d x = x − l n ( 1 + e x ) + C \int \frac{1}{1+e^x}dx=x-ln(1+e^x)+C ∫1+ex1dx=x−ln(1+ex)+C
- 9 ∫ x 2 + a 2 d x = x 2 x 2 + a 2 + a 2 2 l n ( x + x 2 + a 2 ) + C \int\sqrt{x^2+a^2}dx=\frac{x}{2}\sqrt{x^2+a^2}+\frac{a^2}{2}ln(x+\sqrt{x^2+a^2})+C ∫x2+a2dx=2xx2+a2+2a2ln(x+x2+a2)+C
- 10 ∫ x 2 − a 2 d x = x 2 x 2 − a 2 − a 2 2 l n ( x + x 2 − a 2 ) + C \int\sqrt{x^2-a^2}dx=\frac{x}{2}\sqrt{x^2-a^2}-\frac{a^2}{2}ln(x+\sqrt{x^2-a^2})+C ∫x2−a2dx=2xx2−a2−2a2ln(x+x2−a2)+C
- 11 ∫ a 2 − x 2 d x = x 2 a 2 − x 2 + a 2 2 a r c s i n x a + C \int\sqrt{a^2-x^2}dx=\frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}arcsin\frac{x}{a}+C ∫a2−x2dx=2xa2−x2+2a2arcsinax+C
- 12 ∫ t a n x d x = − l n ∣ c o s x ∣ + C \int tanxdx=-ln|cosx|+C ∫tanxdx=−ln∣cosx∣+C
- 13 ∫ c o t x d x = l n ∣ s i n x ∣ + C \int cotxdx=ln|sinx|+C ∫cotxdx=ln∣sinx∣+C
前言
这些公式都是必记的!因为经常在考场上出现,如果现推的话又很容易出错和耗时间,故需要我们深刻地去记忆。
公式推导所得答案不唯一,若想检验答案正确性,可以通过对所得答案进行求导,若求导后的值和原式相同,则答案正确。
1 ∫ c s c x d x = l n ∣ c s c x − c o t x ∣ + C \int cscxdx=ln|cscx-cotx|+C ∫cscxdx=ln∣cscx−cotx∣+C
原式 = ∫ c s c x ( c s c x − c o t x ) c s c x − c o t x d x = ∫ c s c 2 x − c s c x c o t x c s c x − c o t x d x 原式=\int \frac{cscx(cscx-cotx)}{cscx-cotx}dx=\int \frac{csc^2x-cscxcotx}{cscx-cotx}dx 原式=∫cscx−cotxcscx(cscx−cotx)dx=∫cscx−cotxcsc2x−cscxcotxdx = ∫ 1 c s c x − c o t x d ( c s c x − c o t x ) =\int \frac{1}{cscx-cotx}d(cscx-cotx) =∫cscx−cotx1d(cscx−cotx) = l n ∣ c s c x − c o t x ∣ + C =ln|cscx-cotx|+C =ln∣cscx−cotx∣+C
2 ∫ s e c x d x = l n ∣ s e c x + t a n x ∣ + C \int secxdx=ln|secx+tanx|+C ∫secxdx=ln∣secx+tanx∣+C
原式 = ∫ s e c x ( s e c x + t a n x ) s e c x + t a n x d x = ∫ s e c 2 x + s e c x t a n x s e c x + t a n x d x 原式=\int\frac{secx(secx+tanx)}{secx+tanx}dx=\int\frac{sec^2x+secxtanx}{secx+tanx}dx 原式=∫secx+tanxsecx(secx+tanx)dx=∫secx+tanxsec2x+secxtanxdx = ∫ d ( t a n x + s e c x ) s e c x + t a n x =\int\frac{d(tanx+secx)}{secx+tanx} =∫secx+tanxd(tanx+secx) = l n ∣ s e c x + t a n x ∣ + C =ln|secx+tanx|+C =ln∣secx+tanx∣+C
3 ∫ d x x 2 − a 2 = l n ∣ x + x 2 − a 2 ∣ + C \int \frac{dx}{\sqrt{x^2-a^2}}=ln|x+\sqrt{x^2-a^2}|+C ∫x2−a2dx=ln∣x+x2−a2∣+C

令 x = a s e c t x=asect x=asect, 则 d x = a s e c t ⋅ t a n t d t , s e c t = x a , t a n t = x 2 − a 2 a dx=asect·tantdt, sect=\frac{x}{a},tant=\frac{\sqrt{x^2-a^2}}{a} dx=asect⋅tantdt,sect=ax,tant=ax2−a2
原式 = ∫ a s e c t ⋅ t a n t d t a 2 s e c 2 t − a 2 = ∫ a s e c t ⋅ t a n t d t a 2 ( s e c 2 t − 1 ) = ∫ s e c t ⋅ t a n t d t t a n t 原式 =\int\frac{asect·tantdt}{\sqrt{a^2sec^2t-a^2}}=\int\frac{asect·tantdt}{\sqrt{a^2(sec^2t-1)}}=\int\frac{sect·tantdt}{tant} 原式=∫a2sec2t−a2asect⋅tantdt=∫a2(sec2t−1)asect⋅tantdt=∫tantsect⋅tantdt = ∫ s e c t d t = l n ∣ s e c t + t a n t ∣ + C = l n ∣ x a + x 2 − a 2 a ∣ + C =\int sectdt=ln|sect+tant|+C=ln|\frac{x}{a}+\frac{\sqrt{x^2-a^2}}{a}|+C =∫sectdt=ln∣sect+tant∣+C=ln∣ax+ax2−a2∣+C 将分母的 a 看成常数 C ,得最终结果: 将分母的a看成常数C,得最终结果: 将分母的a看成常数C,得最终结果: = l n ∣ x + x 2 − a 2 ∣ + C =ln|x+\sqrt{x^2-a^2}|+C =ln∣x+x2−a2∣+C
4 ∫ d x a 2 − x 2 = a r c s i n x a + C \int \frac{dx}{\sqrt{a^2-x^2}}=arcsin\frac{x}{a}+C ∫a2−x2dx=arcsinax+C
令 x = a s i n t , 则 d x = a c o s t d t , t = a r c s i n x a x=asint,则dx=acostdt,t=arcsin\frac{x}{a} x=asint,则dx=acostdt,t=arcsinax
原式 = ∫ a c o s t d t a 2 − a 2 s i n 2 t = ∫ a c o s t d t a c o s t 原式=\int\frac{acostdt}{\sqrt{a^2-a^2sin^2t}}=\int\frac{acostdt}{acost} 原式=∫a2−a2sin2tacostdt=∫acostacostdt = ∫ 1 d t = ∫ t + C =\int1dt=\int t+C =∫1dt=∫t+C = a r c s i n x a + C =arcsin\frac{x}{a}+C =arcsinax+C</

文章列举了13个重要的积分公式,包括与三角函数、对数、反三角函数相关的积分计算,如cscx、secx、1/(x^2-a^2)等的积分表达,并通过逐步解析展示了如何推导这些公式,强调了记忆这些公式在解决数学问题时的重要性。
最低0.47元/天 解锁文章
34万+






