笔记六:图像全局最大最小值归一化,多图批量处理

import os
from PIL import Image
import numpy as np
from tqdm import tqdm

img_path = r'D:/dataset/6/sy' #获取当前代码文件的路径
save_path = r'D:/dataset/normalization/sy' #获取存储路径
a = 0
b = 1
#定义为1,是因为如果为0最后代码中b值类型不会改变,
#数值类型不同无法进行归一化计算,可以更大一点以确保初始定义值不是最小值
i = 1

#找出全局像素最大值、最小值
for item in tqdm(os.listdir(img_path)):
    arr = item.strip().split('*')
    img_name = arr[0]
    image_path = os.path.join(img_path, img_name)
    img = Image.open(image_path)
    c = np.max(img)
    d = np.min(img)
    
    if a < c:
        a = c
    else:
        a = a
    if b > d:
        b = d
    else:
        b = b
    
    if i % 20 == 0:
        print('max:{}'.format(a))
        print('min:{}'.format(b))
    i += 1   
        
#归一化操作
for item in tqdm(os.listdir(img_path)):
    arr = item.strip().split('*')
    img_name = arr[0]
    image_path = os.path.join(img_path, img_name)
    img = Image.open(image_path)
    img = (img - b) / (a - b) #最大最小值归一化
    img = 255 * img  #考虑是否需要可视化,决定是否乘255
    img = Image.fromarray(np.uint8(img))
    img.save(save_path +'/'+img_name)

最大最小值归一化的相关知识相对基础,其他博客的解释也很详尽,我就不班门弄斧了。只是实现一个功能比较基础的代码。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>