Python批量修改xml与图像间对应关系,实现VOC数据集打乱(shuffle)
自己制作的数据集每个类别都相互在一起,数据集并未打乱,这会导致网络在学习过程中对权重参数产生一定的拉扯,降低了模型的鲁棒性。而且在训练时使用shuffle只是打乱每个轮次训练数据的顺序,并没有彻底改变数据集的顺序问题。,但是两个工作在我使用的时候都出现了xml文件名与images图像无法对应,标签都乱了(这是最主要的问题,会导致模型训练得乱七八糟);针对标签乱了的问题,我仔细检查几次运行得结果,发现是读取jpg文件和xml文件时顺序不一样,所以最后无法对应,因此参考这篇博客。此前参考两位博主的代码。