安装好Anacondaj后,我们就一并安装了condai这个包管理工具包括Python、Jupyter NoteBook、Numpy、Pandas、Matplotlib.Sklearn等180多个科学包及其依赖项。
which conda或conda-version命令检查是否安装正确
conda list查询
conda install安装
conda update升级
conda remove卸载
新建一个python环境:conda create-n myenv python=3
进入环境source activate myenv
离开环境source deactivate
列出环境conda env list
删除环境conda env remove-n env name
Tensorflow
Tensorflow2.0安装环境 版本注意:
NVID1A驱动程序需410.x或更高版本。
CUDA的版本需要是10.0(推荐10.0.130,不可以是10.1)
同时cudnn版本号需要大于7.4.1(目前推荐7.6.0)
算力7.5 GTX16660Ti
nvidia-smi
更新驱动后的版本
conda install tensorflow-gpu
可提前查看版本 conda search cudatoolkit 和 conda search cudnn
conda install cudatoolkit
安装NVIDIA相关软件必须包括: (一)NVIDIA驱动程序 (二)CUDA (三) cudnn
虚拟环境下创建kernel
pip install —user ipykernel
python -m ipykernel install --user --name tf15
#查看已有kernel:jupyter kernelspec list
#删除不想要的kernel: jupyter kernelspec uninstall unwanted-kernel
要在Jupyter Lab中设置Anaconda虚拟环境的内核,你可以按照以下步骤进行操作:
-
首先,确保你已经安装了Jupyter Lab和Anaconda。
-
在终端中,使用以下命令创建一个新的Anaconda虚拟环境:
conda create --name myenv python=3.7
这将创建一个名为**
myenv
**的新环境,并指定Python版本为3.7。你可以根据需要更改环境名称和Python版本。 -
激活新创建的环境:
conda activate myenv
-
安装**
ipykernel
**库:conda install ipykernel
-
安装内核到Jupyter Lab中:
python -m ipy