deeplab环境配置出现的问题(tensorflow pytorch)

安装好Anacondaj后,我们就一并安装了condai这个包管理工具包括Python、Jupyter NoteBook、Numpy、Pandas、Matplotlib.Sklearn等180多个科学包及其依赖项。

which conda或conda-version命令检查是否安装正确

conda list查询

conda install安装

conda update升级

conda remove卸载

新建一个python环境:conda create-n myenv python=3

进入环境source activate myenv

离开环境source deactivate

列出环境conda env list

删除环境conda env remove-n env name

Tensorflow

Tensorflow2.0安装环境 版本注意:

NVID1A驱动程序需410.x或更高版本。

CUDA的版本需要是10.0(推荐10.0.130,不可以是10.1)

同时cudnn版本号需要大于7.4.1(目前推荐7.6.0)

算力7.5 GTX16660Ti

nvidia-smi

更新驱动后的版本

conda install tensorflow-gpu

可提前查看版本 conda search cudatoolkit 和 conda search cudnn

conda install cudatoolkit

安装NVIDIA相关软件必须包括: (一)NVIDIA驱动程序 (二)CUDA (三) cudnn

虚拟环境下创建kernel

pip install —user ipykernel

python -m ipykernel install --user --name tf15

#查看已有kernel:jupyter kernelspec list

#删除不想要的kernel: jupyter kernelspec uninstall unwanted-kernel

要在Jupyter Lab中设置Anaconda虚拟环境的内核,你可以按照以下步骤进行操作:

  1. 首先,确保你已经安装了Jupyter Lab和Anaconda。

  2. 在终端中,使用以下命令创建一个新的Anaconda虚拟环境:

    
    conda create --name myenv python=3.7
    
    

    这将创建一个名为**myenv**的新环境,并指定Python版本为3.7。你可以根据需要更改环境名称和Python版本。

  3. 激活新创建的环境:

    
    conda activate myenv
    
  4. 安装**ipykernel**库:

    
    conda install ipykernel
    
    
  5. 安装内核到Jupyter Lab中:

    
    python -m ipy
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值