Spark学习笔记(6)——RDD转换算子

RDD方法又称RDD算子。RDD的常用方法分为两大类:转换和行动

  • 转换就是将旧的RDD包装成新的RDD,实现功能的补充和封装。比如flatMap和map方法
  • 行动就是触发任务的调度和作业的执行,比如collect方法

RDD转换算子

RDD 根据处理的数据类型不同将算子整体上分为 Value 类型、双 Value 类型和 Key-Value类型

1. Value 类型

(1) map

➢ 函数签名:

def map[U: ClassTag](f: T => U): RDD[U] 

➢函数说明:
将处理的数据逐条进行映射转换,这里的转换可以是类型的转换,也可以是值的转换。

使用map方法对RDD进行包装时
1.rdd数据处理中一个分区里的数据是按顺序一个一个去执行处理逻辑,只有前一个数据执行完所有逻辑,才会执行下一个数据
2.不同分区的数据计算是无序的

(2) mapPartitions

➢函数签名

def mapPartitions[U: ClassTag](
 f: Iterator[T] => Iterator[U],
 preservesPartitioning: Boolean = false): RDD[U]

➢ 函数说明
将待处理的数据以分区为单位发送到计算节点进行处理,这里的处理是指可以进行任意的处理,哪怕是过滤数据。

例:过滤出每个分区的最大值

 val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4),2)

 val mpRDD: RDD[Int] = rdd.mapPartitions(
      iter => {
        List(iter.max).iterator
      }
 )
 mpRDD.collect().foreach(println)

map 和 mapPartitions 的区别?
➢ 数据处理角度
Map 算子是分区内一个数据一个数据的执行,类似于串行操作。而 mapPartitions 算子是以分区为单位进行批处理操作。
➢ 功能的角度
Map 算子主要目的将数据源中的数据进行转换和改变。但是不会减少或增多数据。
MapPartitions 算子需要传递一个迭代器,返回一个迭代器,没有要求的元素的个数保持不变,所以可以增加或减少数据
➢ 性能的角度
Map 算子因为类似于串行操作,所以性能比较低,而是 mapPartitions 算子类似于批处理,所以性能较高。但是 mapPartitions 算子会将整个分区的数据加载到内存中,在数据没有全部处理完之前整个分区数据都不会被释放掉,因此会长时间占用内存,那么这样会导致内存可能不够用,出现内存溢出的错误。所以在内存有限的情况下,不推荐使用。使用 map 操作。

(3) mapPartitionsWithIndex

➢ 函数签名

def mapPartitionsWithIndex[U: ClassTag](
 f: (Int, Iterator[T]) => Iterator[U],
 preservesPartitioning: Boolean = false): RDD[U]

➢ 函数说明
将待处理的数据以分区为单位发送到计算节点进行处理,这里的处理是指可以进行任意的处理,哪怕是过滤数据,在处理时同时可以获取当前分区索引

与mapPartitions相比,mapPartitionsWithIndex可以在处理时同时获取当前分区索引然后对指定分区进行特定操作

(4) flatMap

➢ 函数签名

def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U]

➢ 函数说明
先对集合中的元素调用函数f进行映射处理,把所有元素都处理为集合,然后再对元素进行扁平化。

例:将 List(List(1,2),3,List(4,5))进行flatMap操作

    val rdd: RDD[Any] = sc.makeRDD(List(
      List(1, 2), 3, List(4, 5)
    ))
    val flatRDD: RDD[Any] = rdd.flatMap(
      data => {
        data match {
          //元素本身就是集合的则不变
          case list: List[_] => list
          //把元素3映射为集合List(3)
          case dat => List(dat)
        }
      }
    )
    flatRDD.collect().foreach(println)

打印结果
在这里插入图片描述

(5) glom

➢ 函数签名

def glom(): RDD[Array[T]]

➢ 函数说明
将同一个分区的数据直接转换为相同类型的内存数组进行处理,分区不变

(6) groupBy

➢ 函数签名

def groupBy[K](f: T => K)(implicit kt: ClassTag[K]): RDD[(K, Iterable[T])]

➢ 函数说明
将数据根据指定的规则进行分组, 分区默认不变,但是数据会被打乱重新组合,符合同一规则的数据会放置在一个集合中然后放在一个分区中,我们将这样的操作称之为 shuffle。极限情况下,数据可能被分在同一个分区中。groupBy就是依据每个元素经过传入的匿名函数运算后返回的结果进行分组。

一个组的数据在一个分区中,但是并不是说一个分区中只有一个组

spark中,shuffle操作必须落盘处理,不能在内存中数据等待,会导致内存溢出。因为要和磁盘交互,所以shuffle的性能非常低

➢ 示例
1.将数据按照奇数和偶数分组

val rdd : RDD[Int] = sc.makeRDD(List(1,2,3,4), 2)
val groupRDD: RDD[(Int, Iterable[Int])] = rdd.groupBy(x => x % 2)
groupRDD.collect().foreach(println)

打印结果
在这里插入图片描述
2.相同的数据分到一组

val rdd = sc.makeRDD(List("Hello","Spark","Spark","Hadoop"),2)
val groupRDD = rdd.groupBy(x=>x)
groupRDD.collect().foreach(println)

打印结果
在这里插入图片描述

(7) filter

➢ 函数签名

def filter(f: T => Boolean): RDD[T]

➢ 函数说明
将数据根据指定的规则进行筛选过滤,符合规则返回true的数据保留,不符合规则返回false的数据丢弃。
当数据进行筛选过滤后,分区不变,但是分区内的数据可能不均衡,生产环境下,可能会出现数据倾斜。

(8) sample

➢ 函数签名

def sample(
 withReplacement: Boolean,
 fraction: Double,
 seed: Long = Utils.random.nextLong): RDD[T]

➢ 函数说明
根据指定的规则从数据集中抽取样本数据

// 抽取数据不放回(伯努利算法)
// 伯努利算法:又叫 0、1 分布。例如扔硬币,要么正面,要么反面。
// 具体实现:根据种子和随机算法算出一个数和第二个参数设置几率比较,小于第二个参数要,大于不

// 第一个参数:抽取的数据是否放回,false:不放回
// 第二个参数:抽取的几率,范围在[0,1]之间,0:全不取;1:全取;
// 第三个参数:随机数种子
val dataRDD1 = dataRDD.sample(false, 0.5)
// 抽取数据放回(泊松算法)
// 第一个参数:抽取的数据是否放回,true:放回;false:不放回
// 第二个参数:重复数据的几率,范围大于等于 0.表示每一个元素被期望抽取到的次数
// 第三个参数:随机数种子
val dataRDD2 = dataRDD.sample(true, 2)

(9) distinct

➢ 函数签名

def distinct()(implicit ord: Ordering[T] = null): RDD[T]
def distinct(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]

➢ 函数说明
将数据集中重复的数据去重。底层调用的还是map然后reduceByKey

(10) coalesce

➢ 函数签名

def coalesce(numPartitions: Int, shuffle: Boolean = false,
 partitionCoalescer: Option[PartitionCoalescer] = Option.empty)
 (implicit ord: Ordering[T] = null)
 : RDD[T]

➢ 函数说明
根据数据量缩减分区,用于大数据集过滤后,提高小数据集的执行效率
当 spark 程序中,存在过多的小任务的时候,可以通过 coalesce 方法,收缩合并分区,减少分区的个数,减小任务调度成本
默认情况下合并分区时同一个分区的数据不会拆开,会合并进同一个分区里,可能会导致数据不均衡,出现数据倾斜,如果想要数据均衡,可以使用shuffle处理(第二个参数传true)

(11) repartition

➢ 函数签名

def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]

➢ 函数说明
coalesce算子可以扩大分区的,但是如果不进行shuffle操作,是没有意义,不起作用。所以如果想要实现扩大分区的效果,需要使用shuffle操作
spark提供了一个简化的操作repartition,该操作内部其实执行的是 coalesce 操作,参数 shuffle 的默认值为 true。无论是将分区数多的RDD 转换为分区数少的 RDD,还是将分区数少的 RDD 转换为分区数多的 RDD,repartition
操作都可以完成,因为无论如何都会经 shuffle 过程。
所以按如下使用更加清晰明了
缩减分区:coalesce,如果想要数据均衡,可以采用shuffle
扩大分区:repartition, 底层代码调用的就是coalesce,而且肯定采用shuffle

(12) sortBy

➢ 函数签名

def sortBy[K](
 f: (T) => K,
 ascending: Boolean = true,
 numPartitions: Int = this.partitions.length)
 (implicit ord: Ordering[K], ctag: ClassTag[K]): RDD[T]

➢ 函数说明
该操作用于排序数据。在排序之前,可以将数据通过第一个参数 f 函数进行处理,之后按照 f 函数处理的结果进行排序,第二个参数为排序方式,默认为true升序排列。排序后新产生的 RDD 的分区数与原 RDD 的分区数一致。中间存在 shuffle 的过程

2. 双Value 类型

双Value 类型就是只对两个数据源进行关联操作的方法

(1) intersection

➢ 函数签名

def intersection(other: RDD[T]): RDD[T]

➢ 函数说明
对源 RDD 和参数 RDD 求交集后返回一个新的 RDD

(2) union

➢ 函数签名

def union(other: RDD[T]): RDD[T]

➢ 函数说明
对源 RDD 和参数 RDD 求并集后返回一个新的 RDD

(3) subtract

➢ 函数签名

def subtract(other: RDD[T]): RDD[T]

➢ 函数说明
以一个 RDD 元素为主,去除两个 RDD 中重复元素,将其他元素保留下来。求差集

(4)zip

➢ 函数签名
def zip[U: ClassTag](other: RDD[U]): RDD[(T, U)]
➢ 函数说明
将两个 RDD 中的元素,以键值对的形式进行合并。其中,键值对中的 Key 为第 1 个 RDD
中的元素,Value 为第 2 个 RDD 中的相同位置的元素
在这里插入图片描述

3.Key - Value 类型

mapValues算子: 依次对每个数据的value值进行相应操作

(1) partitionBy

➢ 函数签名

def partitionBy(partitioner: Partitioner): RDD[(K, V)]

➢ 函数说明
将数据按照指定 Partitioner 重新进行分区。Spark 默认的分区器是 HashPartitioner

(2) reduceByKey

➢ 函数签名

def reduceByKey(func: (V, V) => V): RDD[(K, V)]
def reduceByKey(func: (V, V) => V, numPartitions: Int): RDD[(K, V)]

➢ 函数说明
可以将数据按照相同的 Key 对 Value 进行聚合(分组然后合并数据),可以在 shuffle 前对分区内相同 key 的数据进行预聚合(combine)功能
在这里插入图片描述

(3)groupByKey

➢ 函数签名

def groupByKey(): RDD[(K, Iterable[V])]
def groupByKey(numPartitions: Int): RDD[(K, Iterable[V])]
def groupByKey(partitioner: Partitioner): RDD[(K, Iterable[V])]

➢ 函数说明
将数据源中的数据,相同key的数据分在一个组中,形成一个对偶元组
元组中的第一个元素就是key,元组中的第二个元素就是相同key的value的集合
在这里插入图片描述

与groupBy的区别
1.groupByKey一定是按照key来分组,groupBy还可以是其他的规则
2.groupByKey形成的元组的第二个元素是value的集合(因为key是相同的),而groupBy后的元组的第二个元素是包含key的元组的集合

与reduceByKey的区别
1.groupByKey只分组,若要聚合数据需后续map处理。reduceByKey专用于数据聚合
2.reduceByKey因为可以预聚合,减少落盘时的IO次数,因此做数据聚合reduceByKey性能更高。所以在分组聚合的场合下,推荐使用reduceByKey,如果仅仅是分组而不需要聚合。那么还是只能使用 groupByKey

(4)aggregateByKey

➢ 函数签名

def aggregateByKey[U: ClassTag](zeroValue: U)(seqOp: (U, V) => U,
 combOp: (U, U) => U): RDD[(K, U)]

➢ 函数说明
将数据根据不同的规则进行分区内计算和分区间计算。
aggregateByKey存在函数柯里化,有两个参数列表
第一个参数列表,需要传递一个参数,表示为初始值,主要用于当碰见第一个key的时候,和value进行分区内计算。
第二个参数列表需要传递2个参数,第一个参数表示分区内计算规则
,第二个参数表示分区间计算规则。
aggregateByKey最终的返回数据结果应该和初始值的类型保持一致。

val rdd = sc.makeRDD(List(
            ("a", 1), ("a", 2), ("b", 3),
            ("b", 4), ("b", 5), ("a", 6)
        ),2)

        // aggregateByKey最终的返回数据结果应该和初始值的类型保持一致
        // 获取相同key的数据的平均值 => (a, 3),(b, 4)
        val newRDD : RDD[(String, (Int, Int))] = rdd.aggregateByKey( (0,0) )(
            ( t, v ) => {
                (t._1 + v, t._2 + 1)
            },
            (t1, t2) => {
                (t1._1 + t2._1, t1._2 + t2._2)
            }
        )

与reduceByKey的区别
reduceByKey分区内和分区间的计算规则是一样的,而aggregateByKey可以选择不一样的规则

(5)foldByKey

➢ 函数签名

def foldByKey(zeroValue: V)(func: (V, V) => V): RDD[(K, V)]

➢ 函数说明
当分区内计算规则和分区间计算规则相同时,aggregateByKey 就可以简化为 foldByKey

val dataRDD1 = sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val dataRDD2 = dataRDD1.foldByKey(0)(_+_)

比reduceByKey多一个初始值

(6)combineByKey

➢ 函数签名

def combineByKey[C](
 createCombiner: V => C,
 mergeValue: (C, V) => C,
 mergeCombiners: (C, C) => C): RDD[(K, C)]

➢ 函数说明
最通用的对 key-value 型 rdd 进行聚集操作的聚集函数(aggregation function)。类似于aggregate(),combineByKey()允许用户返回值的类型与输入不一致
// 第一个参数表示:将相同key的第一个数据进行结构的转换,实现操作
// 第二个参数表示:分区内的计算规则
// 第三个参数表示:分区间的计算规则

reduceByKey、foldByKey、aggregateByKey、combineByKey 的区别?
这四个方法底层其实都是调用的同一个方法combineByKeyWithClassTag[C],只不过传入的参数不同
reduceByKey: 相同 key 的第一个数据不进行任何计算,分区内和分区间计算规则相同
FoldByKey: 相同 key 的第一个数据和初始值进行分区内计算,分区内和分区间计算规则相同
AggregateByKey:相同 key 的第一个数据和初始值进行分区内计算,分区内和分区间计算规则可以不相同
CombineByKey:当计算时,发现数据结构不满足要求时,可以让第一个数据转换结构。分区内和分区间计算规则不相同。

(7)join

➢ 函数签名

def join[W](other: RDD[(K, W)]): RDD[(K, (V, W))]

➢ 函数说明
在类型为(K,V)和(K,W)的 RDD 上调用,返回一个相同 key 对应的所有元素连接在一起的(K,(V,W))的 RDD

与groupBy的区别:
1.join的value类型可以不相同,并且join后每个value元组只包含两个value
2.两个不同数据源的数据,相同的key的value会连接在一起,形成元组。
如果两个数据源中key没有匹配上,那么数据不会出现在结果中。
如果两个数据源中key有多个相同的,会依次匹配,可能会出现笛卡尔乘积,数据量会几何性增长,会导致性能降低。

(8)leftOuterJoin

➢ 函数签名

def leftOuterJoin[W](other: RDD[(K, W)]): RDD[(K, (V, Option[W]))]

➢ 函数说明
类似于 SQL 语句的左外连接。对应的还有rightOuterJoin

(9)cogroup

connect+group,一个数据源中相同key数据组成一个组和另一个数据源中相同key数据组去联结。可以同时传入多个RDD一起联结
➢ 函数签名

def cogroup[W](other: RDD[(K, W)]): RDD[(K, (Iterable[V], Iterable[W]))]

➢ 函数说明
在类型为(K,V)和(K,W)的 RDD 上调用,返回一个(K,(Iterable,Iterable))类型的 RDD

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值