一、概述
1、numpy(ndarray):一个开源的python科学计算基础库。具有广播功能函数;整合C/C++/Fortran代码的工具;线性代数、傅里叶变换、随机数生成等功能。是SciPy、Pandas等数据处理或科学计算库的基础。
2、pandas(series、dataframe):是Python第三方库,提供高性能易用数据类型和分析工具。基于Series、Dataframe两种数据类型的各种操作:基本操作、运算操作、特征类操作、关联类操作
二、关于numpy
1、数据的维度:
(1)一维数据:由对等关系的有序或无序数据构成,采用线性方式组织(列表([])和集合({})类型)
【注】列表与数组的对比:列表中的数据类型可以不同,但数组中的数据类型都得一样
(2)二维数据:有多个以为去诶数据构成,是一维数据的组合形式(列表类型)
(3)多维数据:由一维或二维数据在新维度(如时间维度)上扩展而成(列表类型)
(4)高维数据:仅利用最基本的二元关系展示数据间的复杂结构(字典类型或数据表达格式)
2、numpy的数组对象ndarray:
(1)为什么要使用numpy:数组对象可以去掉元素间运算所需的循环,使一维向量更像单个数据;设置专门的数组对象,经过优化,可以提升这类应用的运算速度
(3)关于ndarray:是一个多维数组对象,由两部分构成——实际的数据;描述这些数据的元数据(数据维度、数据类型等)
【注】ndarray数组一般要求所有元素类型相同(同质),数组下标从0开始
(4)基本操作:
np.array()
生成一个ndarray数组,轴(axis)——保持数据的维度;秩(rank)——轴的数量
eg:np.array([[0,1,2,3,4],
[9,8,7,6,5]])
ndarray对象的属性:
.ndim:秩,即轴的数量或维度的数量
.shape:ndarray对象的尺度,对于矩阵,n行m列

本文深入探讨Python中的Numpy和Pandas库,介绍了Numpy的ndarray对象,包括数据维度、基本操作及数组的创建、索引和切片。还详细讲解了Pandas的Series和DataFrame类型,以及数据类型操作与运算。此外,文章还涵盖了数据的CSV文件存取和numpy的统计、随机数与梯度函数。
最低0.47元/天 解锁文章

882

被折叠的 条评论
为什么被折叠?



