Python数据分析与展示-Numpy、Pandas

本文深入探讨Python中的Numpy和Pandas库,介绍了Numpy的ndarray对象,包括数据维度、基本操作及数组的创建、索引和切片。还详细讲解了Pandas的Series和DataFrame类型,以及数据类型操作与运算。此外,文章还涵盖了数据的CSV文件存取和numpy的统计、随机数与梯度函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、概述

1、numpy(ndarray):一个开源的python科学计算基础库。具有广播功能函数;整合C/C++/Fortran代码的工具;线性代数、傅里叶变换、随机数生成等功能。是SciPy、Pandas等数据处理或科学计算库的基础。

2、pandas(series、dataframe):是Python第三方库,提供高性能易用数据类型和分析工具。基于Series、Dataframe两种数据类型的各种操作:基本操作、运算操作、特征类操作、关联类操作

二、关于numpy

1、数据的维度:

(1)一维数据:由对等关系的有序或无序数据构成,采用线性方式组织(列表([])和集合({})类型)

【注】列表与数组的对比:列表中的数据类型可以不同,但数组中的数据类型都得一样

(2)二维数据:有多个以为去诶数据构成,是一维数据的组合形式(列表类型)

(3)多维数据:由一维或二维数据在新维度(如时间维度)上扩展而成(列表类型)

(4)高维数据:仅利用最基本的二元关系展示数据间的复杂结构(字典类型或数据表达格式)

2、numpy的数组对象ndarray:

(1)为什么要使用numpy:数组对象可以去掉元素间运算所需的循环,使一维向量更像单个数据;设置专门的数组对象,经过优化,可以提升这类应用的运算速度

(3)关于ndarray:是一个多维数组对象,由两部分构成——实际的数据;描述这些数据的元数据(数据维度、数据类型等)

【注】ndarray数组一般要求所有元素类型相同(同质),数组下标从0开始

(4)基本操作:

np.array()

生成一个ndarray数组,轴(axis)——保持数据的维度;秩(rank)——轴的数量

eg:np.array([[0,1,2,3,4],

                       [9,8,7,6,5]])

ndarray对象的属性:

.ndim:秩,即轴的数量或维度的数量

.shape:ndarray对象的尺度,对于矩阵,n行m列

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值