1.安装acaconda
2.安装显卡驱动
驱动下载地址
首先确定显卡型号,打开「设备管理器」,展开「显示适配器」分类,就可以看到电脑中所有的 GPU 型号。
关于驱动型号的规则

比如我这里型号是NVIDIA Geforce GTX 745,就这样选。
下载安装。
安装过程中,NVIDIA图形驱动程序-许可协议流程中,选择:NVIDIA显卡驱动和GeForce Expeience,然后点击:同意并继续;NVIDIA图形驱动程序-选项流程中,可以选择默认的【精简】- 更新现有驱动程序并保留当前NVIDIA设置,然后点击:下一步;之后安装完成关闭。
驱动安装完成后,我们进入【设备管理器】,展开【显示适配器】,查看 NVIDIA显卡驱动程序属性,当NVIDIA显卡设备状态显示为:这个设备运转正常,说明NVIDIA驱动程序已成功安装。NVIDIA显卡驱动程序安装与卸载流程
在命令行输入nvidia-smi,有:

3.打开Anaconda Prompt,创建虚拟环境,并激活
输入conda create -n pytorch python=3.8
这里的pytorch是环境名,python=3.8指定该环境下的python版本
输入y
输入conda info --envs可以看到conda环境中有新建的pytorch环境
输入activate pytorch激活环境
补充:
conda activate pytorch可以进入名为“pytorch”的环境
conda activate可以退出当前环境
conda remove -n name --all可以删除环境
4.导入清华源
# 添加清华镜像
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
# 添加pytorch镜像
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
# for legacy win-64
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/peterjc123/
conda config --set show_channel_urls yes
5.安装pytorch
可以先尝试一下这个
注意:上面链接中未配置清华源,若配置清华源,则去掉-c pytorch,(-c pytorch表示指定使用pytorch channel,这个服务器位于国外,下载速度很慢,使用刚刚添加进的清华镜像源可以得到一个较快的下载速度)。
我一直装不上gpu版本的pytorch,遂安装cpu版本,后再改成gpu版本。
获得安装命令
复制最下面的命令,删去-c pytorch,(-c pytorch表示指定使用pytorch channel,这个服务器位于国外,下载速度很慢,使用刚刚添加进的清华镜像源可以得到一个较快的下载速度)。
在pytorch的环境下执行这条命令。
安装完成。
可以用conda list 命令查看安装的包,安装的pytorch 和 torchvision 都是CPU版本的,以及cpuonly包,卸载该包
执行命令conda uninstall cpuonly
提示你当你卸载cpuonly后一些函数库的版本改变(其中就包括pytorch 和 torchvision)
安装完成后,就可以看到pytorch 和 torchvision 都是 GPU 版本了
在命令行先输入python,然后输入import torch,如果输入后没有任何报错,没有任何显示那就是成功了,然后再输入torch.cuda.is_available(),返回的是True,那便是完成了整个操作。
参考
6.配置Jupyter
以管理员身份打开Anaconda Prompt
输入conda install nb_conda之后弹出提示,输入y即可安装
输入conda install ipykernel之后弹出提示,输入y即可安装
输入activate pytorch激活pytorch环境,即(base)变成(pytorch)
输入conda install nb_conda之后弹出提示,输入y即可安装
输入conda install ipykernel之后弹出提示,输入y即可安装
这个里面说是在base下装nb_conda,在pytorch下装ipykernel,可以试试,我这里都装了
之后change kernel中多了两项,切换到第二项;
即可运行import torch.
7.在pycharm中使用创建的pytorch环境
新建项目,在设置中选择项目标签下的Python Interpreter

点击后面的add interpreter,点击下面的add local interpreter

在第一个选项卡中的Location位置选择一个空文件夹,在Base interpreter中选择anaconda安装路径下的python.exe,
直接切换到下一个选项卡conda environment,在conda executable中选择anaconda安装路径下的conda.exe,然后load environment

使用 pytorch环境,然后点OK
8.下载安装CUDA
首先在命令行输入nvidia-smi,知道可以下载什么版本的CUDA,比如我这里可以下载CUDA 12.4以下的版本

下载地址
按实际情况选择,下载安装包

安装时系统检查选同意,许可协议选自定义,点“下一步”,在CUDA下的Development下不要勾选Visual Studio Intergration,记下安装位置。
查看环境变量是否添加进去,右键我的电脑->属性->高级系统设置-高级

9.安装CUDnn
下载地址
选择一个对应的版本下载,比如我是12.x
第一次登陆需要注册一下
下载完解压可以得到三个文件夹
把这三个文件夹复制到我们之前的那个CUDA目录下,C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.3,这个目录下也有三个同名文件,把文件复制过来就可以了。
并添加环境变量,在Path下加四条


配完环境变量一定要重启一下才能生效。
10.测试
用命令行测试一下CUDA有没有装好
输入nvcc --version或者nvcc -V
能识别nvcc应该就正常了
注意version前面是两个杠

更进一步地去这个文件夹下C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.3\extras\demo_suite
鼠标右键,“在终端中打开”
分别输入./bandwidthTest.exe和./deviceQuery.exe
都得到PASS
第一种情况如下:

至此,在pycharm里面的pytorch环境下,import torch可以运行。
CUDA安装参考了这个
over!
9296

被折叠的 条评论
为什么被折叠?



