【DSP】chp—2、离散时间信号的频域分析(专栏系统讲解DSP,超详细)

目录

一、离散时间信号的频域分析(DFT和DTFT分析)

1、离散时间信号与离散傅里叶变换(DFT)

2、DFT的性质

3、离散时间傅里叶变换(DTFT)

4、频谱的概念

5、离散时间信号的滤波

6、离散信号的采样与频率混叠

7、总结

二、能量谱 和 功率谱

1、能量信号与功率信号的基本定义

(1)能量信号

(2)功率信号

2、能量谱

(1)能量信号的能量谱

(2)能量信号的功率谱

3、功率谱

(1)功率信号的能量谱

(2)功率信号的功率谱

(3)为什么自相关函数的傅里叶变换是功率谱呢?

(4)功率谱的计算方法

4.1 计算自相关函数

4.2 傅里叶变换

4.3 估算离散功率谱

(5)功率谱的性质

(6)功率谱的应用

(7)总结

三、DTFT 的扩展—— z-变换

1、DTFT(离散时间傅里叶变换)

2、z-变换

3、DTFT与z-变换的关系

(1)单位圆上的z-变换与DTFT的关系

(2)z-变换的更广泛应用

(3)收敛性

(4)复平面中的极点和零点

4. 总结

四、4种傅里叶变换对比分析

1、连续非周期信号 — 傅里叶变换 (FT)

2、连续周期信号 — 傅里叶级数 (FS)

3、离散非周期信号 — 离散时间傅里叶变换 (DTFT)

4、离散周期信号 — 离散傅里叶级数 (DFS)

5、小结与对比

五、信号截断与DTFT的频谱泄露

1、DTFT与信号截断

2、频谱泄露的原因

3、减小频谱泄露的技巧

4、总结

六、DFT——第五种傅里叶变换?

1、DFT并不是“第五种”傅立叶变换

2、DFT与Z变换、DTFT的关系

3、DFT的性质

4、DFT的应用

5、DFT的计算与优化

6、DFT的应用实例—实现卷积

七、Hilbert 变换

1、Hilbert 变换的基本实现步骤

2、Hilbert 变换的性质

(1)幅度不变性

(2)正交性

(3)卷积性质

(4)与实因果信号傅立叶变换的关系

3、非平稳信号与瞬时频率

4、综合评价与应用意义

5、总结

八、补充知识

1、噪声及其模型

(1)噪声分类

1.1 白噪声

1.2 有色噪声

(2)噪声的直方图

2.1 均匀分布白噪声

2.2 高斯分布白噪声

2、相关及相关函数的基本概念

(1)相关的意义

(2)相关函数的定义

2.1 互相关函数

2.2 自相关函数

2.3 更一般的相关函数表达式

3、功率信号与能量信号的相关函数

(1)功率信号相关函数

(2)能量信号相关函数

4、自相关函数的性质

5、相关函数在目标检测中的应用

(1)雷达目标检测原理

(2)信号检测问题

6、实际计算中的相关函数估计

附录

1、为什么自相关函数的傅里叶变换是功率谱呢?

(1)自相关函数的物理意义

(2)傅里叶变换与频谱分析

(3)Wiener–Khinchin 定理

(4)定义回顾

(5)将自相关看作卷积

(6)卷积定理的应用

(7)Parseval 定理和能量守恒

(8)总结本质


一、离散时间信号的频域分析(DFT和DTFT分析)

1、离散时间信号与离散傅里叶变换(DFT)

        离散时间信号可以表示为一个以整数索引的序列,通常为 x[n],其中 n 是离散的时间索引。要分析信号的频域特性,可以使用离散傅里叶变换(DFT)。

离散傅里叶变换的公式如下:

                                                        X[k] = \sum_{n=0}^{N-1} x[n] e^{-j \frac{2\pi}{N} kn}

其中:

  • X[k] 是信号 x[n] 在频域上的表现,k 是频域的离散频率索引。
  • x[n] 是离散时间信号的时域表示。
  • N 是信号的长度。
  • j 是虚数单位。

通过计算 X[k],我们可以得到信号在离散频率上的幅度和相位信息。

2、DFT的性质

        离散傅里叶变换有一些重要的性质,这些性质有助于我们理解频域分析的结果,并可以用于信号的分析与处理。

  • 周期性X[k] 是周期性函数,周期为 N,即 X[k+N] = X[k] 。
  • 线性:如果信号是两个信号的加和,那么其频域表示是各个频域表示的加和。
  • 时域平移和频域平移的关系:如果信号 x[n] 在时域上平移了 m 个单位,则其频域表现将乘上一个复指数因子 e^{-j \frac{2\pi}{N} km}
  • 对称性:离散傅里叶变换的结果 X[k] 存在共轭对称性,即 X[N-k] = \overline{X[k]} 。

3、离散时间傅里叶变换(DTFT)

        除了离散傅里叶变换(DFT)外,还有一种用于分析无限长离散时间信号的工具,那就是离散时间傅里叶变换(DTFT)。DTFT 用于描述连续频率域中的离散时间信号的频谱。

        对于有限长的离散信号,对其做DTFT得到连续的频域表示,但由于其在时域是有限长的,信息量不足以支撑频域的连续信息,所以频域的连续信息也是伪连续的,即只需少数离散值即可表示所有的频域信息。这就是从DTFT到DFT的过程。

        离散时间傅里叶变换的公式如下:

                                                        X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}

                其中,\omega 是连续的频率变量。

        DTFT 描述了信号在连续频率上的特性,它的结果通常是一个周期性的复数函数。与 DFT 不同,DTFT 是对无限长的离散时间信号进行频域分析的工具。

4、频谱的概念

频谱描述了信号在频率上的能量分布,通常我们关心的包括信号的:

  • 幅度谱:描述信号在各个频率上的幅度分布。
  • 相位谱:描述信号在各个频率上的相位分布。

通过频谱分析,尤其是幅度谱,我们可以了解信号是否包含某些特定频率成分,是否适合进行滤波等操作。

5、离散时间信号的滤波

        频域分析对于信号的滤波有重要意义。在频域中,我们可以通过修改频谱(如减弱或增强特定频率成分)来进行滤波操作。常见的滤波方式包括:

  • 低通滤波器:保留低频成分,去除高频成分。
  • 高通滤波器:保留高频成分,去除低频成分。
  • 带通滤波器:保留特定频段的频率成分,去除其他频率成分。

这些操作可以通过设计特定的频率响应来实现,然后应用于信号的频域表示。

6、离散信号的采样与频率混叠

        在将连续时间信号转化为离散时间信号时,必须保证采样频率满足奈奎斯特定理(Nyquist Theorem)。如果采样频率过低,可能会导致信号的频率混叠现象(aliasing),这会导致原始信号的高频成分被误解为低频成分。

        因此,在进行频域分析时,采样率的选择非常重要,通常需要保证采样率是信号最大频率的两倍以上。

7、总结

        离散时间信号的频域分析是通过傅里叶变换(DFT或DTFT)将信号从时域转换到频域的过程。这使我们能够深入理解信号的频谱特性,并在此基础上进行各种信号处理操作,如滤波、压缩等。频域分析是信号处理中的一个核心工具,广泛应用于通信、音频处理、图像处理等领域。

二、能量谱 和 功率谱

1、能量信号与功率信号的基本定义

(1)能量信号

定义
对于连续时间信号 x(t),能量定义为

                                                                E = \int_{-\infty}^{\infty} |x(t)|^2 \, dt

对于离散时间信号 x[n],能量为

                                        ​​​​​​​        ​​​​​​​        ​​​​​​​        E = \sum_{n=-\infty}^{\infty} |x[n]|^2

特点
        当 E 是有限值时,该信号称为能量信号。由于能量是有限的,其平均功率(即单位时间内的能量)通常趋于零。

(2)功率信号

定义
对于连续时间信号,平均功率定义为

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        P = \lim_{T\to\infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 \, dt

对于离散时间信号,平均功率为

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​     P = \lim_{N\to\infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2

特点
        如果 P 是有限且非零的,则该信号称为功率信号。此类信号通常是无限长的,例如平稳随机过程或者周期信号,其能量往往发散(无限大),但单位时间的平均能量(功率)却是有限的。

        

2、能量谱

在频域分析中,我们关心信号在频率上的能量或功率分布。两种常见的谱描述方法是“能量谱”和“功率谱”,但它们适用于不同类型的信号。

(1)能量信号的能量谱​​​​​​​

对于能量信号,通常采用傅里叶变换

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} \, dt

(离散时间信号则为 X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n} ),根据 Parseval 定理,信号的总能量可以表示为

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        E = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2 \, d\omega 

因此,能量谱通常定义为

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        E(\omega) = |X(\omega)|^2

它描述了能量在各个频率上的分布情况。对于离散信号,只需将积分换成对应的频域范围(一般在 [-\pi, \pi] 内)。

(2)能量信号的功率谱

        对于能量信号,由于其总能量有限而平均功率趋于零,所以严格意义上讲,能量信号不适合用“功率谱”来描述。如果将能量信号做时间局部化处理(例如通过短时傅里叶变换),也可以得到局部功率估计,但其本质还是反映能量分布,通常不采用“功率谱”这一描述。

3、功率谱

        功率谱(Power Spectrum)描述了信号的功率如何分布在不同的频率上。它是信号的频域表示,常常用于分析信号在不同频率成分的能量分布情况。

(1)功率信号的能量谱

        对于功率信号,由于其总能量为无穷大,我们不能直接定义其“能量谱”。如果将功率信号截取有限时长后进行傅里叶变换,再归一化后可以得到一种近似的能量分布,但这种处理方式通常仅在短时分析中使用,并不能代表信号整体的能量分布。因此,通常对功率信号更关注的是其功率谱密度,而非“能量谱”。

(2)功率信号的功率谱

        对于功率信号,由于能量发散,传统的傅里叶变换不再适用。此时引入功率谱密度(Power Spectral Density, PSD)的概念。

        功率谱的定义通常基于信号的自相关函数 R_x[m](自相关函数是描述信号自身与时移版本之间相似性的函数)。功率谱 S_x(\omega) 可以通过信号的自相关函数的傅里叶变换来获得。

        对于周期性信号,其功率谱 S_x(\omega) 就是信号在各个频率成分上功率的分布。对于平稳信号,功率谱也是稳定的,并且它可以反映信号的频率特性。

(3)为什么自相关函数的傅里叶变换是功率谱呢?

为什么自相关函数的傅里叶变换是功率谱呢?本质分析:

《见附录1》

(4)功率谱的计算方法

对于实际信号而言,通常我们是通过计算其离散傅里叶变换(DFT)来估计功率谱。一个常用的方法是通过计算信号的周期性自相关函数,然后进行傅里叶变换,得到功率谱。具体过程如下:

4.1 计算自相关函数

自相关函数描述了信号与其延迟版本之间的相似性,通常可以通过以下方式估算:

连续情况:         ​​​​​​​        ​​​​​​​        R_x(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} x(t) x(t + \tau)^* dt

离散情况:       ​​​​​​​        ​​​​​​​        ​​​​​​​        R_x[m] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] x[n+m]^*

4.2 傅里叶变换

通过对自相关函数 R_x[m] 进行傅里叶变换,可以得到功率谱:

连续情况:         ​​​​​​​        ​​​​​​​                  S_x(\omega) = \int_{-\infty}^{\infty} R_x(\tau) e^{-j\omega \tau} d\tau

离散情况:       ​​​​​​​        ​​​​​​​        ​​​​​​​          S_x(\omega) = \sum_{m=-\infty}^{\infty} R_x[m] e^{-j \omega m}          ​​​​​​​          

4.3 估算离散功率谱

如果信号是离散的,还可以通过计算信号的离散傅里叶变换(DFT)并取其幅度的平方来近似功率谱:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​          \hat{S}_x[k] = \frac{1}{N} \left| \sum_{n=0}^{N-1} x[n] e^{-j \frac{2\pi}{N}kn} \right|^2

其中,\hat{S}_x[k] 是信号的离散功率谱,表示信号在离散频率上的功率密度。也就是平均能量。

(5)功率谱的性质

功率谱有一些重要的性质,可以帮助我们更好地理解信号的频域特性:

  • 非负性:功率谱总是非负的,因为它代表了信号在不同频率上的功率密度。

  • 对称性:如果信号是实数信号,则其功率谱是对称的,即 S_x(-\omega) = S_x(\omega) 。

  • 能量总和:功率谱的积分(对频率的积分)给出了信号的总功率:

    P = \int_{-\infty}^{\infty} S_x(\omega) d\omega

    对于周期信号,功率谱的积分会给出信号的平均功率。

  • 平稳性:对于平稳随机过程,功率谱是一个常数函数,不依赖于时间。

(6)功率谱的应用

功率谱在信号处理和通信领域有许多应用,常见的应用包括:

  • 滤波设计:在设计滤波器时,通过分析信号的功率谱,可以确定信号中哪些频率成分是重要的,进而设计滤波器去除不需要的频率成分。
  • 噪声分析:功率谱可用于分析信号中的噪声特性。在通信中,噪声的功率谱有助于评估信号的质量。
  • 信号压缩:通过分析信号的功率谱,能够识别出信号中最重要的频率成分,从而进行有效的信号压缩。
  • 故障检测与预测:在机械和电气设备中,功率谱分析常常用于监测设备的运行状态,识别潜在的故障。

(7)总结

        功率信号的功率谱是描述信号频域能量分布的一个重要工具,它反映了信号在各个频率上的功率分布情况。通过功率谱分析,可以更好地理解信号的频率特性,进而进行滤波、噪声抑制、信号压缩等处理。功率谱的计算通常基于信号的自相关函数,并通过傅里叶变换得到。它在许多应用中都是一个不可或缺的工具,尤其是在通信、音频处理和信号处理等领域。

三、DTFT 的扩展—— z-变换

1、DTFT(离散时间傅里叶变换)

        DTFT 是用于分析离散时间信号频域特性的一种工具,它通过对离散时间信号进行傅里叶变换,将信号从时域转换到频域,能够描述信号在连续频率上的谱。

对于离散时间信号 x[n],其 DTFT 定义为:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​          X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}

其中:

  • X(e^{j\omega}) 是信号 x[n] 在频域上的表示。
  • \omega 是连续的角频率,范围为 -\pi \leq \omega < \pi 。
  • 该变换将离散时间信号的时域表示转化为频域表示。

        DTFT 是对信号在连续频率上的描述,结果通常是一个复数值函数,周期为 2\pi ,并且通常是连续的。

2、z-变换

        z-变换是一个更广泛的工具,它通过引入复数域中的一个复数变量 z 来表示信号的频域特性。z-变换适用于处理无限长离散时间信号或系统,它对于信号的稳定性、收敛性以及系统的频域特性有着更深入的理解。

对于离散时间信号 x[n],其 z-变换定义为:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}

其中:

  • X(z) 是信号 x[n] 的 z-变换。
  • z 是复平面上的一个复数变量,通常表示为 z = re^{j\omega} ,其中 r 是模,\omega 是相位。

        z-变换可以视为对信号的全域分析,它能够覆盖比 DTFT 更广泛的情况,尤其是可以处理包括稳定性分析在内的系统设计问题。

3、DTFT与z-变换的关系

        尽管 DTFT 和 z-变换是两种不同的变换方法,但它们之间有着紧密的联系,尤其是当我们将 z-变换的变量 z 替换为单位圆上的复数时,z-变换就变成了 DTFT。具体地,它们之间的关系如下:

(1)单位圆上的z-变换与DTFT的关系

        考虑 z-变换中的复数变量 z = e^{j\omega} ,其中 \omega 是角频率。将这个关系代入到 z-变换公式中,得到:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​          X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}

        这正是 DTFT 的定义。因此,DTFT 可以看作是 z-变换在单位圆(即 |z| = 1 )上的特例。换句话说,DTFT 是 z-变换在 z = e^{j\omega} 时的结果,它描述了信号在连续频率 \omega 下的频域特性。

(2)z-变换的更广泛应用

        虽然 DTFT 在单位圆上等价于 z-变换,但 z-变换的定义域比 DTFT 更为广泛。z-变换不仅能处理离散信号的频率特性,还能提供信号的收敛范围和稳定性分析。特别是,z-变换可以用于研究离散时间系统的稳定性,计算系统的传递函数等。

(3)收敛性

        在 z-变换中,复数变量 z 的模 r( 即 z = re^{j\omega} )决定了信号或系统的收敛区域。如果信号在某个 r 范围内收敛,那么 z-变换就能有效描述信号的特性。而 DTFT 只考虑 z 的单位圆 |z| = 1 ,因此它只适用于那些在单位圆上收敛的信号。

(4)复平面中的极点和零点

        z-变换可以通过极点和零点图分析信号或系统的行为。通过分析信号或系统的 z-变换,尤其是其极点位置,能够判断系统的稳定性以及信号的性质。而 DTFT 无法直接提供极点零点分析,它仅仅描述了信号在频域上的分布。

4. 总结

        DTFT 和 z-变换有着紧密的关系,特别是在 z-变换的复数变量 z 取单位圆上的值时,它与 DTFT 等价。因此,DTFT 可以视为 z-变换的一个特例,专门用于描述信号在频域上的连续频率特性。与此同时,z-变换提供了更广泛的信号分析工具,能够处理信号的收敛性、稳定性以及极点零点分析等问题,适用于更复杂的信号处理和系统分析。

四、4种傅里叶变换对比分析

   

        上图展示了在时域和频域分别是连续/离散、周期/非周期时,对应的四种常用傅里叶变换形式。它们分别是:

  1. 连续—非周期信号的傅里叶变换(Fourier Transform, FT)
  2. 连续—周期信号的傅里叶级数(Fourier Series, FS)
  3. 离散—非周期信号的离散时间傅里叶变换(Discrete-Time Fourier Transform, DTFT)
  4. 离散—周期信号的离散傅里叶级数(Discrete Fourier Series,有时也称 DFS)

为便于理解,我们先把这四种情形按“时域”和“频域”的特性列一个简要对比表,然后再逐一进行分析。

时域频域对应变换常见记号
连续 + 非周期连续 + 非周期傅里叶变换 (FT)X(\omega) or X(j\omega)
连续 + 周期离散 + 非周期傅里叶级数 (FS)X(k\omega_0)
离散 + 非周期连续 + 周期离散时间傅里叶变换 (DTFT)X(e^{j\omega})
离散 + 周期离散 + 周期离散傅里叶级数 (DFS)X[k]

注意:有时把离散 + 周期情形下的傅里叶变换称为 DFT (Discrete Fourier Transform)(DFS只取一个周期时),但在更严格的数学表述中,DFS(离散傅里叶级数)和 DFT(有限点离散傅里叶变换)仍有些区分:DFS 假设信号在时域是周期的,因此频率上也表现为周期离散谱;DFT 常用于数值计算实现,信号同样被视为周期延拓。两者在概念上非常接近,这里可以把 DFS 和 DFT 视为同一类变换的两种场景。

为什么要由DFS过渡到DFT?

1、连续非周期信号 — 傅里叶变换 (FT)

时域:连续、非周期

  • 用函数 x(t) 表示,t \in (-\infty, \infty) 。
  • 信号没有周期性,往往是一次性信号或某种持续但无周期的波形(如脉冲、衰减信号等)。

频域:连续、非周期

  • 对应的频域函数也在整个频率轴上连续定义,通常记为 X(\omega)(有时也写作 X(j\omega) )。
  • 变换定义为: X(\omega) = \int_{-\infty}^{\infty} x(t)\, e^{-j \omega t} \, dt
  • 这是最基础的傅里叶变换形式,描述了信号在连续频率 \omega 上的“分布”。

特点

  • 可逆性:如果 X(\omega) 已知,则原信号可由逆傅里叶变换得到: x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)\, e^{j \omega t} \, d\omega
  • 适用范围:要求 x(t)x(t)x(t) 是 绝对可积 或满足某些更宽松的条件(如平方可积等),以保证积分收敛。

2、连续周期信号 — 傅里叶级数 (FS)

时域:连续、周期

  • 用函数 x(t) 表示,假设它的周期为 T。也就是说,x(t + T) = x(t) 对所有 t 成立。
  • 可以把其看作在时域重复出现的波形,例如正弦波、方波、三角波等。

频域:离散、非周期

  • 因为时域具有周期性,根据傅里叶变换的性质,频域将会在离散的频率点上出现谱线。
  • 这些离散频率往往是基频 \omega_0 = \frac{2\pi}{T}​ 的整数倍处,即 k \omega_0​(k 为整数)。
  • 一般可写为: x(t) = \sum_{k=-\infty}^{\infty} a_k \, e^{j k \omega_0 t} 其中, a_k = \frac{1}{T} \int_{t_0}^{t_0 + T} x(t)\, e^{-j k \omega_0 t} \, dt

特点

  • 在频域上只有一系列离散的“谱线”a_k​,这些谱线的间隔是 \omega_0​。
  • 傅里叶级数是最早被研究的傅里叶分析工具,用于分析周期信号。

3、离散非周期信号 — 离散时间傅里叶变换 (DTFT)

时域:离散、非周期

  • 用序列 x[n] 表示,n \in (-\infty, \infty) 并且是整数。
  • 信号不具有周期性(或无限长,或有限长但不重复)。

频域:连续、周期

  • 由于时域是离散的,在频域会表现出周期性。根据信号与系统中的双重谱线性质,可以推导出频域会是对 \omega 周期为 2\pi 的函数。
  • 变换定义为: X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] \, e^{-j \omega n}
  • 它在 \omega 轴上通常只需要研究一个周期区间(例如 -\pi \le \omega < \pi ),因为在其它区间上它会重复出现。

特点

  • 与连续非周期信号的傅里叶变换一样,X(e^{j\omega}) 是一个连续的函数,但与时域非周期对应,它在频域上周期性重复
  • 如果想数值地计算 DTFT,则常用其 离散傅里叶变换 (DFT) 的采样近似。

4、离散周期信号 — 离散傅里叶级数 (DFS)

时域:离散、周期

  • 用序列 x[n]表示,周期为 N,即 x[n+N] = x[n] 对所有整数 n 成立。
  • 这意味着在时域上,信号是反复出现的一个离散序列“块”。

频域:离散、周期

  • 由于离散并且周期,结合前面几种情形的性质,频域也会是离散并且周期性的。
  • 通常可写为: x[n] = \frac{1}{N} \sum_{k=0}^{+\infty } X[k] \, e^{j \frac{2\pi}{N} k n} 其中 X[k] 是序列 x[n]DFS 系数X[k] = \sum_{n=0}^{+\infty } x[n]\, e^{-j \frac{2\pi}{N} k n}
  • x[n] 和 X[k] 都是周期性重复的。

特点

  • 这是与“连续周期信号的傅里叶级数”在离散领域的对应。
  • 若将这个有限长的指数和看作一次数值计算过程,这就是最常用的 DFT(离散傅里叶变换)——它在实践中通常用 FFT (Fast Fourier Transform) 算法实现。

5、小结与对比

  • 时域连续 & 非周期频域连续 & 非周期
    傅里叶变换 (FT)
    常见于一次性或无限长但非周期的信号,如脉冲、衰减、噪声等。

  • 时域连续 & 周期频域离散 & 非周期
    傅里叶级数 (FS)
    典型于周期性的连续信号,如正弦波、方波等,频域上出现离散的谱线。

  • 时域离散 & 非周期频域连续 & 周期
    离散时间傅里叶变换 (DTFT)
    常见于在数字信号处理里无限长或有限长(视为无限延拓)的序列,频率响应往往是 2\pi 周期地重复。

  • 时域离散 & 周期频域离散 & 周期
    离散傅里叶级数 (DFS)
    也常称为 DFT,典型于长度为 N 的周期离散序列,频域也离散且周期。实际计算中多用 FFT。

        通过上述对应关系,可以更好地理解为什么“时域的周期性”会导致“频域的离散性”,以及“时域的离散性”会导致“频域的周期性”,从而掌握这四类变换之间的互补和联系。它们是信号与系统分析中不可或缺的数学工具,也经常在工程领域配合使用。

五、信号截断与DTFT的频谱泄露

        在信号处理中,信号截断是指将信号在有限的时间或样本范围内进行裁剪或截取。对于离散时间傅里叶变换(DTFT)而言,截断信号会对其频谱产生显著影响,导致频谱泄露(spectral leakage)现象。

1、DTFT与信号截断

        离散时间傅里叶变换(DTFT)是对离散信号进行频域分析的工具。给定一个离散时间信号 x[n],其 DTFT 定义为:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​          X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}

        DTFT 是一个连续频率的函数,可以得到信号的连续频谱。然而,实际应用中,通常会处理有限长度的信号,因此对信号进行截断,得到一个有限长度的信号 x_T[n] ,其中 x_T[n] = 0 对于 n 超出特定范围的样本。这种信号截断会引入频谱泄露。

信号截断:

        假设原始信号 x[n] 的持续时间是无限的,但我们只能在有限区间内观测到这个信号。常见的截断方法是窗口化,即我们选择一个窗口函数 w[n] 来截断信号:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​           x_T[n] = x[n] \cdot w[n]

其中:

  • w[n] = 1,对于 0 \leq n < N
  • w[n] = 0,对于 n \geq N

        在这种情况下,DTFT 的频谱将不再是原始信号的精确频谱,而是由于窗口函数引入的改变。特别地,频谱泄露是由于窗函数的频谱特性导致的。

2、频谱泄露的原因

        频谱泄露发生的根本原因是信号在时域的截断。截断信号等同于在时域上对信号乘以一个矩形窗函数(或其他类型的窗函数),而矩形窗的频谱是一个sinc函数,具有无限的旁瓣。

窗口函数的频谱:

如果信号被一个矩形窗函数截断,窗口函数的频谱 W(e^{j\omega}) 为:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​          W(e^{j\omega}) = \frac{\sin(\omega N / 2)}{\sin(\omega / 2)}

这个频谱是一个具有主瓣和多个旁瓣的 sinc 函数。矩形窗的旁瓣会出现在原始信号频谱的不同频率位置,这些旁瓣就是频谱泄露的来源。

频谱泄露的表现:

  1. 主瓣展宽:信号频谱的主瓣(中心频率的部分)变宽。
  2. 旁瓣泄露:除了主瓣外,还会有较小的旁瓣,且这些旁瓣会影响到其他频率成分,导致频谱“泄露”到其他频率上。
  3. 频谱混叠:高频部分的信号可能被误解为低频部分的信号,导致频谱的混叠和信息丢失。

3、减小频谱泄露的技巧

虽然频谱泄露无法完全避免,但我们可以通过以下方法减小其影响:

使用窗函数:

窗函数可以对信号进行加权,使得截断信号的频谱特性得到改善。常用的窗函数包括:

  • 汉明窗(Hamming window):具有较低的旁瓣泄露。
  • 汉宁窗(Hanning window):旁瓣较小,适用于抑制泄露。
  • 布莱克曼窗(Blackman window):具有较低的旁瓣,并且主瓣更窄。

        这些窗函数的频谱特性更适合于减少频谱泄露,虽然它们也会引入一定的主瓣宽度,但总体上能够有效减小旁瓣泄露。

增加信号的采样点数:

        通过增加信号的采样点数,可以减小频谱泄露的影响,因为增加采样点数实际上增加了频域的分辨率,从而减小了泄露的影响。

零填充(Zero Padding):

        在信号后面填充零,使得信号的长度增加,频谱的分辨率增加,从而减少泄露效应。零填充并不会改变信号的实际频谱,但可以提供更精确的频率估计。

4、总结

        信号截断会导致 DTFT 的频谱泄露,原因是时域上的窗函数引入了对频域的畸变。频谱泄露表现为主瓣展宽和旁瓣的引入,降低了频率分辨率,并且可能导致频谱混叠。为了减小频谱泄露,可以使用适当的窗函数、增加采样点数或使用零填充等技巧。

六、DFT——第五种傅里叶变换?

1、DFT并不是“第五种”傅立叶变换

        有时把离散 + 周期情形下的傅里叶变换称为 DFT (Discrete Fourier Transform)(DFS只取一个周期时),但在更严格的数学表述中,DFS(离散傅里叶级数)和 DFT(有限点离散傅里叶变换)仍有些区分:DFS 假设信号在时域是周期的,因此频率上也表现为周期离散谱;DFT 常用于数值计算实现,信号同样被视为周期延拓。两者在概念上非常接近,这里可以把 DFS 和 DFT 视为同一类变换的两种场景。

为什么要由DFS过渡到DFT?

  1. 从原理上,\tilde{x}(nT_s)\tilde{X}(k\Omega_0) 各自一个周期即可表示完整的序列;
  2. 在计算机上实现信号频谱分析时,要时域、频域都是有限长的;
  3. FT、FS、DTFT、DFS 都不合要求。利用DFS时,频域的周期性,各取一个周期,形成新的变换对。

但DFT并不是“第五种”傅立叶变换!

DFS 的公式为:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        X(k) = \sum_{n=-\infty}^{\infty} x(n) e^{-j \frac{2\pi}{N} kn}

DFT 则是对有限长度的信号进行分析,变换公式如下:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        X(k) = \sum_{n=0}^{N-1} x(n) e^{-j \frac{2\pi}{N} kn}, \quad k = 0, 1, \dots, N-1

2、DFT与Z变换、DTFT的关系

DFT、DTFT(离散时间傅里叶变换)、Z变换三者之间有着密切关系:

  • Z变换:它是对复平面上信号的分析,涉及到单位圆的概念。
  • DTFT:它是在单位圆上进行的,适用于无限长的离散时间信号。
  • DFT:是对离散频率的分析,对有限长的信号进行频域转换,并且其取值点分布在单位圆上的 N 个等分点

这些关系帮助我们理解,DFT 是 DTFT 在有限序列上的一个离散化形式。

3、DFT的性质

DFT 拥有几个关键性质,以下几种:

        线性性:DFT 对加法和乘法满足线性,即: DFT[a x(n) + b y(n)] = a X(k) + b Y(k)

        正交性:DFT 的基函数是正交的,意味着不同频率成分之间相互独立。

        循环移位时域信号的移位会导致频域信号的相位改变。例如:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​         x(n+m) \xrightarrow{\text{DFT}} X(k) e^{-j \frac{2\pi}{N} km}

        频谱泄漏:DFT 由于对信号进行有限截断,可能会导致频谱泄漏,影响频谱的准确性。

        偶对称性与奇对称性:对于实值信号,其 DFT 结果具备对称性,即复共轭对称。

4、DFT的应用

DFT 在信号处理中的重要应用包括:

  • 频谱分析:DFT 用于提取信号的频率成分,广泛应用于音频、图像等领域。
  • 卷积计算:通过 DFT 和逆 DFT,可以高效地计算两个信号的卷积。时域的卷积运算通过 DFT 转化为频域的乘法运算,计算效率大大提高。 y(n) = x(n) * h(n) \quad \xrightarrow{\text{DFT}} \quad Y(k) = X(k) H(k) 然后通过 IDFT 得到结果。

5、DFT的计算与优化

        快速傅里叶变换(FFT) 算法可以显著提高 DFT 的计算效率,特别是当信号长度较大时。FFT 是 DFT 的优化算法,它将 DFT 的计算复杂度从 O(N^2) 降低至 O(N \log N),这使得 DFT 能够在实时信号处理中的应用成为可能。

6、DFT的应用实例—实现卷积

如何用 DFT 实现线性卷积:

  • 零填充:为了避免环形卷积的影响,通常需要对信号进行零填充,使得卷积结果更加准确。

叠接相加法与叠接舍去法

  • 叠接相加法:这种方法用于分段计算卷积,通过把信号分段并计算每段的卷积,最终再合并这些结果。
  • 叠接舍去法:与相加法不同,舍去法会丢弃不需要的部分,只保留有效部分。

通过这些方法,DFT 能够高效地实现长序列的卷积计算。

七、Hilbert 变换

1、Hilbert 变换的基本实现步骤

利用离散傅里叶变换(DFT)实现 Hilbert 变换,主要步骤如下:

  • 步骤1:对原始信号做 DFT
    将信号 x(n) 通过 DFT 得到其频域表示 X(k)。这一步是将时域的离散信号映射到频域,为后续构造 Hilbert 变换做准备。

  • 步骤2:构造 Hilbert 变换的频域操作
    通过分段定义(用分段函数或条件表达式描述)对不同频率区间的 X(k) 乘以不同的系数。常见做法是:  Z(k) = \begin{cases} X(k) & k = 0 \\ 2X(k) & k = 1, 2, \dots, \frac{N}{2} - 1 \\ 0 & k = \frac{N}{2}, \dots, N-1 \end{cases}

    • 保留正频率部分不变;
    • 将直流分量和负频率部分作相应的修改,使得经过变换后得到的频域信号 Z(k) 能够满足解析信号的构造要求。
  • 步骤3:对修改后的频域信号做逆 DFT
    利用逆 DFT 将修改后的频谱 Z(k) 转换回时域,从而得到 Hilbert 变换后的信号 \hat{x}(n)

  • 步骤4:构造解析信号
    根据公式,利用原始信号与其 Hilbert 变换构成复信号(解析信号),公式形如

    x_a(n) = x(n) + j\,\hat{x}(n)

    这一过程使得原本的实信号可以通过 Hilbert 变换获得相位信息,为后续求瞬时频率打下基础。

        这种基于 DFT/IDFT 的实现方法是离散时间信号处理中常用的数值计算方式,既保证了频域操作的简洁性,又便于在计算机上实现。

2、Hilbert 变换的性质

文档详细讨论了 Hilbert 变换的几个重要性质,主要包括:

(1)幅度不变性

  • 性质说明
    Hilbert 变换不会改变信号的幅度谱,即变换前后信号的幅度信息保持一致,只影响相位信息。
    这种特性使得在构造解析信号时,原始信号的能量分布得以保持,仅仅通过相位调制实现正交分解。

(2)正交性

  • 性质说明
    信号与其 Hilbert 变换后的结果在数学意义上是正交的。
    这种正交性在很多应用中非常有用,例如在信号分解与重构、噪声抑制及调制解调技术中,正交性保证了两部分信号在能量计算上互不干扰。

(3)卷积性质

  • 性质说明
    文档讨论了 Hilbert 变换在卷积运算下的性质,即如果对两个信号分别做 Hilbert 变换,其卷积结果可通过特定的公式关系得到。这种性质表明 Hilbert 变换在处理复信号的卷积时,可以将时域的卷积运算转换为频域的乘积形式,从而简化运算。

(4)与实因果信号傅立叶变换的关系

  • 性质说明
    通过 Hilbert 变换,可以揭示实因果信号的内部关系。文档中给出了一些公式,展示了如何利用 Hilbert 变换求得信号的实部和虚部之间的联系,并进而从直角坐标转换到极坐标表示,从而更直观地得到信号的幅度与相位信息。这种转换对于理解信号的频谱结构和复倒谱(Cepstrum)分析有重要意义。

3、非平稳信号与瞬时频率

在文档后半部分,重点讨论了如何利用 Hilbert 变换求非平稳信号的瞬时频率(IF):

  • 背景说明
    对于单一正弦波或多个正弦分量构成的平稳信号,其频率是固定的;而在实际的物理世界中,如语音信号,其频率随时间发生变化,因此称为非平稳信号。

  • 解析信号构造与瞬时频率求解
    为了求取非平稳信号的瞬时频率,首先通过 Hilbert 变换构造解析信号,即

    x_a(t) = x(t) + j\,\hat{x}(t)

    然后提取解析信号的相位信息,并对相位进行时间求导,得到瞬时频率:

    \omega_{\text{IF}}(t) = \frac{d\phi(t)}{dt}

    这种方法可以捕捉到信号在时间域中频率的细微变化,对于语音处理和其他时变信号的分析非常重要。

  • 应用实例
    文档中还举例说明了如何从 Hilbert 变换得到信号的包络、相位函数和瞬时频率,帮助读者理解实际应用中如何利用这些工具对复杂信号进行时频分析。

4、综合评价与应用意义

从文档1的内容可以看出,Hilbert 变换在离散时间信号处理中的应用具有以下意义:

  • 数值实现简便
    利用 DFT 和 IDFT 构造 Hilbert 变换使得在数字信号处理中能够方便地实现频域操作,为实时处理提供了计算基础。

  • 相位与瞬时频率分析
    通过 Hilbert 变换可以构造解析信号,从而提取信号的相位信息及其瞬时频率,这对于处理非平稳信号(如语音信号)具有重要应用价值。

  • 信号正交性和卷积性质
    Hilbert 变换保持信号的幅度不变性及正交性,为信号分解、滤波及调制解调提供了理论支持,同时其与卷积运算的结合能进一步简化频域信号处理问题。

  • 理论与实际结合
    文档不仅给出了理论推导,还强调了如何将这些理论应用于实际问题,如构造解析信号、求瞬时频率等,这种理论与实践相结合的方法为信号处理技术的深入研究提供了参考。

5、总结

        这部分详细阐述了离散时间信号频域分析中 Hilbert 变换的实现过程、性质及其在信号分析中的应用。通过利用 DFT 和逆 DFT 实现 Hilbert 变换,文档介绍了如何构造解析信号,并由此获得信号的相位信息和瞬时频率。这不仅为非平稳信号的处理提供了有力工具,也在数学上揭示了信号幅度、相位及正交性之间的内在关系,对实际工程中诸如语音处理、调制解调等技术具有重要指导意义。

八、补充知识

1、噪声及其模型

(1)噪声分类

1.1 白噪声
  • 基本特点
    • 频谱特性:白噪声的频谱为一直线,说明在所有频率上的能量分布均匀。
    • 统计特性:各时刻取值之间互不相关,即各点之间相互独立。
  • 自相关函数
    • 白噪声的自相关函数常用理想的冲激函数表示(尽管文档中未完整写出公式,但常见形式为: R_{ww}(n) = \sigma^2 \delta(n) 其中 \delta(n) 为离散时间的单位冲激函数)。
1.2 有色噪声
  • 特点
    • 有色噪声的频谱不是一条直线,能量在各频率上的分布不均,常反映出某些特定的物理或环境特性。

除了白噪声和有色噪声外,还有脉冲噪声、工频噪声。

噪声与信号的相互作用是信号处理中必须面对的问题,噪声可以以加法或乘法的形式与信号混合:

        加法性噪声x(n) = s(n) + u(n)

        乘法性噪声x(n) = s(n) \cdot u(n)
​​如何去除噪声始终是一个重要课题。

(2)噪声的直方图

2.1 均匀分布白噪声

            

  • 图示内容
    • 横坐标为采样序列 u(n)(n 从1到100),
    • 直方图显示出噪声样本的均匀分布,即各取值出现的概率大致相等。
2.2 高斯分布白噪声

        ​​​​​​​         

  • 图示内容
    • 同样绘制了 u(n) 的直方图,但结果呈现出正态(高斯)分布的钟型曲线,符合很多实际应用中白噪声的统计特性。

2、相关及相关函数的基本概念

这部分详细讨论了“相关”的概念,这是衡量两个信号或一个信号与自身移位后相似程度的重要工具,内容包括:

(1)相关的意义

        相关是研究两个信号之间,或一个信号和其移位后的相关性,是信号分析、检测与处理的重要工具;在随机信号的理论中起到了重要的作用。

  • 相关系数
    • 公式:\rho_{xy} = \frac{\sum x(n)y(n)}{\left[\sum x^2(n) \sum y^2(n)\right]^{\frac{1}{2}}}                并且 |\rho_{xy}| \leq 1
    • 用于定量描述两个信号之间的相似性,但相关系数不足以反映信号内部的结构相关性,因此引入了相关函数。

(2)相关函数的定义

2.1 互相关函数
  • 定义
    对于两个信号 x(n)y(n),互相关函数定义为: r_{xy}(m) = \sum_{n=-\infty}^{\infty} x(n) \, y(n-m) 此处 m 表示时间延迟。
  • 另一种表达
    同理,可以定义 r_{yx}(m) = \sum_{n=-\infty}^{\infty} y(n) \, x(n-m) 两者在很多情况下具有对称性。​​
2.2 自相关函数
  • 定义(实序列)
    对于实值信号 x(n),自相关函数为: r_x(m) = \sum_{n=-\infty}^{\infty} x(n) \, x(n-m)
  • 定义(复序列)
    对于复值信号,需要取共轭: r_x(m) = \sum_{n=-\infty}^{\infty} x(n) \, x^*(n-m) 其中 x^*(n-m) 表示复共轭。​​
2.3 更一般的相关函数表达式

涉及信号多个分量的相关函数计算公式,其形式为:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        r_{xy}(m) = \sum_{n=-\infty}^{\infty} \Bigl[ x_i(n) \, y_j(n) + x_j(n) \, y_i(n) - \ldots \Bigr]

(注:文档中采用了指标 i,\,j 来表征不同分量,具体公式写为:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        r_{xy}(m)=\sum_{n=-\infty}^{\infty} \bigl[ x(n)_i y(n)_j + x(n)_j y(n)_i - \ldots \bigr]

但原文给出的符号较为简略,此处理解为多个信号分量之间的组合运算。)

3、功率信号与能量信号的相关函数

功率信号和能量信号在相关函数定义上的不同:

(1)功率信号相关函数

  • 互相关函数的定义为: r_{xy}(m) = \lim_{N \to \infty} \frac{1}{N} \sum_{n=-N}^{N} x(n) \, y(n-m)
  • 自相关函数的定义为: r_{x}(m) = \lim_{N \to \infty} \frac{1}{N} \sum_{n=-N}^{N} x(n) \, x(n-m) 这种归一化求和方式适用于功率信号(通常是无限长或周期信号),以便反映信号的平均功率。

(2)能量信号相关函数

  • 对于能量有限的信号,则相关函数直接定义为无归一化的求和: r_{x}(m) = \sum_{n=-\infty}^{\infty} x(n) \, x(n-m)

4、自相关函数的性质

文档总结了功率信号自相关函数的若干重要性质,主要包括:

  1. 周期性
    • 如果 x(n) 是周期信号,其周期为 T,则自相关函数 r_x(m) 也是周期性的,周期同为 T 。
  2. 实值性
    • x(n) 为实信号,则 r_x(m) 也是实函数;若为复信号,则满足对共轭对称性(通常形式为 r_x(m) = r_x^*(-m) 。
  3. 最大值处的物理意义
    • 自相关函数在 m=0 处取得最大值,其值等于信号的平均功率或能量(对能量信号来说为总能量)。
  4. 共轭对称性
    • 对于复信号,自相关函数满足: r_{xx}(m) = r_{xx}^*(-m)

5、相关函数在目标检测中的应用

以雷达目标检测为例说明了相关函数的实际应用:

(1)雷达目标检测原理

  • 基本思想
    • 发射信号经过传播后,目标会将信号反射回来,接收信号中包含了发射信号的成分以及噪声。
    • 通过计算接收信号 y(n) 与发射信号 x(n) 的互相关函数: r(n) = y(n) \ast x(n-D) 其中 D 为时延,互相关函数在正确时延处会达到最大值。
  • 应用扩展
    • 此原理不仅适用于雷达,还可推广到声纳等探测系统中,用于确定目标距离。​​

(2)信号检测问题

  • 在检测中如何利用相关函数分离信号与噪声的贡献?
  • 混合信号的相关函数分解: r_x(m) = \sum_{n} \Bigl[ s(n) + u(n) \Bigr] \Bigl[ s(n-m) + u(n-m) \Bigr] 展开后包含 s(n)u(n) 的自相关以及它们之间的互相关项。
  • 由于信号 s(n) 与噪声 u(n) 通常被认为是不相关的,所以交叉项可近似为零,从而简化了相关函数的计算和信号功率的估计。

6、实际计算中的相关函数估计

在实际应用中,由于信号都是有限长离散序列,计算自相关函数时需作适当处理。文档给出了如下近似公式:

有限序列自相关的计算公式
对于序列 x(n)(长度为 N),其自相关函数可近似计算为:

        ​​​​​​​        ​​​​​​​         r_x(m) = \frac{1}{N-m} \sum_{n=0}^{N-m-1} x(n) \, x(n+m), \quad 0 \le m \le N-1

或者采用另一种归一化方法:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        r_x(m) = \frac{1}{N} \sum_{n=0}^{N-1} x(n) \, x(n-m)

注意:当 m 较大时,由于有效求和样本数减少,计算结果会存在一定误差,因此在实际计算中常对 m 的范围做限制。

附录

1、为什么自相关函数的傅里叶变换是功率谱呢?

(1)自相关函数的物理意义

自相关函数 r_x(\tau) 定义为信号 x(t) 与其自身在延时 \tau 下的乘积的时间平均值:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        r_x(\tau) = \lim_{T\to\infty} \frac{1}{2T} \int_{-T}^{T} x(t) \, x^*(t-\tau) \, dt

这描述了信号在不同时间间隔下的相似程度。对平稳信号来说,自相关函数仅依赖于延时 \tau,反映了信号的内在统计结构.

(2)傅里叶变换与频谱分析

在频域上,信号 x(t) 的傅里叶变换 X(f) 给出了信号在各个频率分量上的幅值和相位。Parseval 定理告诉我们信号的能量在时间域与频率域是守恒的:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​      E = \int_{-\infty}^{\infty} |x(t)|^2 \, dt = \int_{-\infty}^{\infty} |X(f)|^2 \, df

对于功率信号,由于其能量无限,我们更关注单位频宽内的平均功率,即功率谱密度 S_x(f) 。

(3)Wiener–Khinchin 定理

Wiener–Khinchin 定理指出,对于平稳信号,其自相关函数 r_x(\tau) 与功率谱密度 S_x(f) 是傅里叶变换的一对:

        ​​​​​​​                        ​​​​​​​        ​​​​​​​        S_x(f) = \int_{-\infty}^{\infty} r_x(\tau) \, e^{-j 2\pi f \tau} \, d\tau

        ​​​​​​​                         ​​​​​​​        ​​​​​​​        r_x(\tau) = \int_{-\infty}^{\infty} S_x(f) \, e^{j 2\pi f \tau} \, df

这一定理揭示了两个事实:

  • 时间平均与频率分布的对应关系:自相关函数捕捉了信号随时间延迟的相似性,而其傅里叶变换给出了信号在各个频率上的功率分布。
  • 非负性:对于实际信号,由于 S_x(f) 表示功率密度,必须为非负值,这与自相关函数作为能量(或功率)统计量的性质相符。

(4)定义回顾

傅里叶变换
对信号 x(t),傅里叶变换定义为

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​            X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}\, dt

自相关函数
对于信号 x(t) 的自相关函数定义为

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​          r_x(\tau) = \int_{-\infty}^{\infty} x(t)x^*(t-\tau)\, dt

其中 x^*(t-\tau) 表示 x(t-\tau) 的复共轭。

(5)将自相关看作卷积

注意到自相关函数可以写成一种卷积形式。令

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        \tilde{x}(t) = x^*(-t)

则有

        ​​​​​​​        ​​​​​​​        ​​​​​​​     r_x(\tau) = \int_{-\infty}^{\infty} x(t)x^*(t-\tau)\, dt = \int_{-\infty}^{\infty} x(t)\tilde{x}(\tau-t)\, dt

这正是信号 x(t)\tilde{x}(t) 的卷积:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​            r_x(\tau) = (x \ast \tilde{x})(\tau)

(6)卷积定理的应用

傅里叶变换的卷积定理告诉我们:

  • y(t) = (x \ast \tilde{x})(t),那么 Y(f) = X(f)\cdot \tilde{X}(f)

接下来,我们需要求 \tilde{X}(f)

  • 根据傅里叶变换的时间反转和共轭性质,有 \tilde{X}(f) = \mathcal{F}\{x^*(-t)\}. 通过变量替换可以证明 \tilde{X}(f) = X^*(f)

因此,自相关函数的傅里叶变换为

        ​​​​​​​        ​​​​​​​           ​​​​​​​         S_x(f) \equiv \mathcal{F}\{r_x(\tau)\} = X(f)\cdot X^*(f) = |X(f)|^2

|X(f)|^2 就是信号在频域上的能量分布,对于功率信号则称为功率谱密度。

(7)Parseval 定理和能量守恒

Parseval 定理说明时域的能量与频域的能量是相等的:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        \int_{-\infty}^{\infty} |x(t)|^2\, dt = \int_{-\infty}^{\infty} |X(f)|^2\, df

\tau = 0 时,自相关函数

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​         r_x(0) = \int_{-\infty}^{\infty} |x(t)|^2\, dt

代表信号的总能量(对于能量信号)。而 |X(f)|^2 在频域积分后也给出同样的能量值。因此,傅里叶变换将时域的“能量分布” r_x(\tau) 转换为频域的“能量谱” |X(f)|^2 。

对于功率信号,由于能量发散,我们通常引入时间归一化的自相关函数(单位时间平均)来定义功率谱密度,数学推导过程类似,只是在归一化上做了处理。

(8)总结本质

  • 核心在于对偶性
    自相关函数反映了信号在时域内各个时刻间的相关性,而傅里叶变换将这种时间结构转化为频域内的乘积(即各频率成分的能量分布)。

  • 卷积定理
    将自相关看作 x(t)x^*(-t) 的卷积,傅里叶变换后变为 X(f)X^*(f),正好得到 X(f)|^2

  • 能量守恒
    Parseval 定理保证了时域总能量与频域能量谱的积分一致,这使得 |X(f)|^2 成为一个合理的能量(或功率)分布描述。

        因此,从数学上,自相关函数的傅里叶变换得到的正是信号在频域内的功率(或能量)分布,这个结果不仅理论上严谨,也在信号处理的实际应用中得到了广泛验证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值