代码随想录算法训练营第二十八天 | 买卖股票的最佳实际、跳跃游戏、K次取反后最大化的数组和

买卖股票的最佳时机

        这里可以得到当有利润就会卖出得到当前的股票,然后就是向后移动一位就可以了,判断卖出那天买入,后一天卖出会不会有收益,有收益就加上,因为同一天的买入和卖出相当于没有操作,因此逻辑性不变,详细代码如下所示:

class Solution(object):
    def maxProfit(self, prices):
        """
        :type prices: List[int]
        :rtype: int
        """
        if len(prices) <=1:
            return 0
        count = 0
        pre = 0
        cur = 1
        while(pre<len(prices)-1):
            if prices[cur] - prices[pre] > 0:
                count += prices[cur] - prices[pre]
            pre+=1
            cur+=1
        return count

跳跃游戏

        这里的思路是不断更新覆盖范围,看覆盖大小是不是一在更新,如果说覆盖范围到达最后的元素,那么符合,但是如果到了覆盖范围的最后一个还没有到达目的地,那么就不可行,直接返回False,详细代码如下所示:

class Solution(object):
    def canJump(self, nums):
        """
        :type nums: List[int]
        :rtype: bool
        """
        if len(nums)<=1:
            return True
        cover = 0
        index = 0
        while(index<=cover):
            cover = max(cover,nums[index]+index)
            if cover >= len(nums) - 1:
                return True
            index+=1
        return False

K次取反后最大化的数组和

        思路如下,我觉得还是比较好的:

        1.​​预处理排序​​:先排序,再按策略翻转,避免重复计算最小值。
        2.​​优先处理负数​​:先翻转所有负数(因为翻转负数能直接增加总和)。
        3.​​剩余次数的数学处理​​:若剩余翻转次数 k 为奇数,只需翻转当前最小元素一次。

详细代码如下所示:

class Solution(object):
    def largestSumAfterKNegations(self, nums, k):
        nums.sort()  # 排序,O(n log n)
        
        # 第一阶段:优先翻转所有负数
        for i in range(len(nums)):
            if nums[i] < 0 and k > 0:
                nums[i] = -nums[i]
                k -= 1
        
        # 第二阶段:若剩余k为奇数,翻转当前最小元素(可能是0)
        if k % 2 == 1:
            nums.sort()  # 重新排序找到最小值
            nums[0] = -nums[0]
        
        return sum(nums)  # 总和计算,O(n)
        

        由于浏览器清空内存之后,原有代码会消失,因此此处链接放的是代码随想录的链接。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值