HBU-NNDL 作业3:分别使用numpy和pytorch实现FNN例题

目录

一、过程推导 - 了解BP原理

1、前馈计算的过程

第二层隐藏层的计算:

输出层的计算

 2、反向传播的计算

BP神经网络权值、阈值更新公式推导

二、数值计算 - 手动计算,掌握细节

三、代码实现 - numpy手推 + pytorch自动

1、对比【numpy】和【pytorch】程序,总结并陈述。

numpy版

pytorch版

2、激活函数Sigmoid用PyTorch自带函数torch.sigmoid(),观察、总结并陈述。

3、激活函数Sigmoid改变为Relu,观察、总结并陈述。

4、损失函数MSE用PyTorch自带函数 t.nn.MSELoss()替代,观察、总结并陈述。

5、损失函数MSE改变为交叉熵,观察、总结并陈述。

6、改变步长,训练次数,观察、总结并陈述。

7、权值w1-w8初始值换为随机数,对比“指定权值”的结果,观察、总结并陈述。

8、权值w1-w8初始值换为0,观察、总结并陈述。

9、全面总结反向传播原理和编码实现,认真写心得体会。

参考


一、过程推导 - 了解BP原理

下面我们将以下图所示的神经网络,该图所示是一个三层神经网络,两层隐藏层和一层输出层,输入层有两个神经元,接收输入样本,为网络的输出。

1、前馈计算的过程

        为了理解神经网络的运算过程,我们需要先搞清楚前馈计算,即数据沿着神经网络前向传播的计算过程,以上图所示的网络为例,输入的样本为:\overrightarrow{a}=(x_{1},x_{2})

三层网络的参数定义为:

 第一层隐藏层的计算

 第一层隐藏层有三个神经元:neu₁、neu₂和。neu₃该层的输入为:

 以单个神经元为例,则其输入为:

         假设我们选择函数f(x)作为该层的激活函数(图中的激活函数都标了一个下标,一般情况下,同一层的激活函数都是一样的,不同层可以选择不同的激活函数),那么该层的输出为:f_{1}(z_{1})f_{2}(z_{2})f_{3}(z_{3})

第二层隐藏层的计算:

 第二层隐藏层有两个神经元:neu₄和neu₅。该层的输入为:

 即第二层的输入是第一层的输出乘以第二层的权重,再加上第二层的偏置。因此得到z_{4}z_{5}的输入分别为:

 该层的输出分别为:f_{4}(z_{4})f_{5}(z_{5})

输出层的计算

 输出层只有一个神经元:neu₆。该层的输入为:

 即:

因为该网络要解决的是一个二分类问题,所以输出层的激活函数也可以使用一个Sigmoid型函数,神经网络最后的输出为f_{6}(z_{6})。 

 2、反向传播的计算

我们已经了解了数据沿着神经网络前向传播的过程,这一节我们来介绍更重要的反向传播的计算过程。假设我们使用随机梯度下降的方式来学习神经网络的参数,损失函数定义为,其中y是该样本的真实类标。使用梯度下降进行参数的学习,我们必须计算出损失函数关于神经网络中各层参数(权重w和偏置b)的偏导数。
假设我们要对第k层隐藏层的参数W^{(k)}和求偏导数b^{(k)}。假设z^{(k)}代表第k层神经元的输入,即

 其中n^{(k-1)}为前一层神经元的输出,则根据链式法则有:

BP神经网络权值、阈值更新公式推导

        此部分以西瓜书上的神经网络为例。
  给定训练集:D=\left \{ (x_{1},y_{1}),(x_{2},y_{2})...,(x_{m},y_{m}) \right \},x_{i}\in \mathbb{R}^{d},y_{i}\in \mathbb{R}^{l}即输入属性序列由d个属性描述,输出ll维实值向量。为了方便讨论,图1给出了拥有d个输入神经元,l个输出神经元,q个隐层神经元的多层前馈网络结构,其中输出层为第j个神经元的阈值用\theta表示,隐层第h个神经元用\varphi _{h}表示。输入层第i个神经元与隐层第h个神经元之间的连接权为v_{ih},隐层第h个神经元与输出层第j个神经元之间的连接权为w_{hj}

这里写图片描述

 记隐层第hh个神经元接收到的输入为\alpha _{h}=\sum_{i=1}^{d}v_{ih}x_{i},输出层的第j个神经元接收到的输入为:\beta _{j}=\sum_{h=1}^{q}w_{hj}b_{h,其中b_{h}为隐层第h个神经元的输出。现在假设隐层和输出层都使用Sigmoid函数:

对训练例(x_k,y_k),假定神经网络的输出为:\widehat{y_k}=(\widehat{y_1},\widehat{y_2},......\widehat{y_l}),即:

\widehat{y_k}=(\beta_j-\theta_j)        (1)

则网络在(xk,yk)(xk,yk)上的均方误差为:

E_k=\frac{1}{2}\sum_{j=1}^{l}(\widehat{j_{j}^{k}}-y_{j}^{k})        (2)

        图1中的网络中有(d+l+1)q+l个参数需要确定。BP是一个迭代学习算法,在迭代的每一轮采用广义的感知机学习规则对参数进行更新估计。下面我们以图中的隐层到输出层的连接权值w_{hj}为例来进行推导:
        BP算法基于梯度下降(gradient descent)策略,以目标的负梯度方向对参数进行调整,对公式2中的误差E_k,给定学习率\eta,有:

\Delta w_{hj}=-\eta\frac{\partial E_k }{\partial w_{hj}}        (3)
        注意到w_{hj}先影响到第j个输出神经元的输入值\beta_j,再影响到其输出值\widehat{y_j^k},然后影响到E_k,有:

\frac{\partial E_k }{\partial w_{hj}}=\frac{\partial E_k}{\partial \widehat{y_j^k}}\cdot \frac{\partial \widehat{y_j^k}}{\partial \beta_j}\cdot \frac{\partial \beta_j}{\partial w_{hj}}        (4)
根据\beta_j的定义有:\frac{\partial \beta_j}{\partial w_{hj}}=b_h,并且Sigmoid函数有一个很好的性质:f(x)'=f(x)(1-f(x)),于是根据公式(1)和(2),有:

g_j=\frac{\partial E_k}{\partial \widehat{y_j^k}}\cdot \frac{\partial \widehat{y_j^k}}{\partial \beta_j}=-(\widehat{y_j^k}-y_j^k)f'(\beta_j-\alpha_j)=(y_j^k-\widehat{y_j^k})\widehat{y_j^k}(1-\widehat{y_j^k})        (5)

将公式(5)带入到公式(4),再带入到公式(3)中,就得到了BP算法中关于w_{hj}的更新公式:

\Delta w_{hj}=\eta g_j b_h        (6)

\Delta \theta _j的更新公式为:

\Delta \theta_j=-\eta \frac{\partial E_k}{\partial \theta_j}=-\eta\frac{\partial E_k}{\partial \widehat{y_j^k}}\cdot \frac{\partial \widehat{y_j^k}}{\partial \theta_j}=-\eta(y_j^k-\widehat{y_j^k})\cdot \widehat{y_j^k}\cdot (1-\widehat{y_j^k})        (7)

BP神经网络的输出层到隐层的连接权值\Delta v_{ih}的更新估计式为:

\Delta v_{ih}=-\eta\frac{\partial E_k}{\partial v_{ih}}=-\eta\frac{\partial E_k}{\partial b_h}\cdot \frac{\partial b_h}{\partial \alpha_h}\cdot \frac{\partial \alpha_h}{\partial v_{ih}}\\=-\eta\sum_{j=1}^{l}\frac{\partial E_k}{\partial \beta_j}\cdot \frac{\partial \beta_j}{\partial b_h}f'(\alpha_h-\gamma _h)x_i\\=\eta b_h(1-b_h)\sum_{j=1}^{l}w_{hj}g_j\\=\eta e_hx_i        

BP神经网络的隐层第h个神经元的阈值\gamma _h的更新公式为:

\Delta \gamma _h=-\eta\frac{\partial E_k}{\partial \gamma_h}=-\eta\sum_{j=i}^{l}\frac{\partial E_k}{\partial \beta_i}\cdot \frac{\partial \beta_i}{\partial b_h}\cdot \frac{\partial b_h}{\partial \gamma _h}=-\eta e_h

学习率\eta\in (0,1)控制着算法每一轮迭代中的更新步长。

二、数值计算 - 手动计算,掌握细节

 

  

三、代码实现 - numpy手推 + pytorch自动

1、对比【numpy】和【pytorch】程序,总结并陈述。

numpy版

import numpy as np


def sigmoid(z):
    a = 1 / (1 + np.exp(-z))
    return a


def forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8):
    in_h1 = w1 * x1 + w3 * x2
    out_h1 = sigmoid(in_h1)
    in_h2 = w2 * x1 + w4 * x2
    out_h2 = sigmoid(in_h2)

    in_o1 = w5 * out_h1 + w7 * out_h2
    out_o1 = sigmoid(in_o1)
    in_o2 = w6 * out_h1 + w8 * out_h2
    out_o2 = sigmoid(in_o2)

    print("正向计算:o1 ,o2")
    print(round(out_o1, 5), round(out_o2, 5))

    error = (1 / 2) * (out_o1 - y1) ** 2 + (1 / 2) * (out_o2 - y2) ** 2

    print("损失函数:均方误差")
    print(round(error, 5))

    return out_o1, out_o2, out_h1, out_h2


def back_propagate(out_o1, out_o2, out_h1, out_h2):
    # 反向传播
    d_o1 = out_o1 - y1
    d_o2 = out_o2 - y2
    # print(round(d_o1, 2), round(d_o2, 2))

    d_w5 = d_o1 * out_o1 * (1 - out_o1) * out_h1
    d_w7 = d_o1 * out_o1 * (1 - out_o1) * out_h2
    # print(round(d_w5, 2), round(d_w7, 2))
    d_w6 = d_o2 * out_o2 * (1 - out_o2) * out_h1
    d_w8 = d_o2 * out_o2 * (1 - out_o2) * out_h2
    # print(round(d_w6, 2), round(d_w8, 2))

    d_w1 = (d_w5 + d_w6) * out_h1 * (1 - out_h1) * x1
    d_w3 = (d_w5 + d_w6) * out_h1 * (1 - out_h1) * x2
    # print(round(d_w1, 2), round(d_w3, 2))

    d_w2 = (d_w7 + d_w8) * out_h2 * (1 - out_h2) * x1
    d_w4 = (d_w7 + d_w8) * out_h2 * (1 - out_h2) * x2
    # print(round(d_w2, 2), round(d_w4, 2))
    print("反向传播:误差传给每个权值")
    print(round(d_w1, 5), round(d_w2, 5), round(d_w3, 5), round(d_w4, 5), round(d_w5, 5), round(d_w6, 5),
          round(d_w7, 5), round(d_w8, 5))

    return d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8


def update_w(w1, w2, w3, w4, w5, w6, w7, w8):
    # 步长
    step = 5
    w1 = w1 - step * d_w1
    w2 = w2 - step * d_w2
    w3 = w3 - step * d_w3
    w4 = w4 - step * d_w4
    w5 = w5 - step * d_w5
    w6 = w6 - step * d_w6
    w7 = w7 - step * d_w7
    w8 = w8 - step * d_w8
    return w1, w2, w3, w4, w5, w6, w7, w8


if __name__ == "__main__":
    w1, w2, w3, w4, w5, w6, w7, w8 = 0.2, -0.4, 0.5, 0.6, 0.1, -0.5, -0.3, 0.8
    x1, x2 = 0.5, 0.3
    y1, y2 = 0.23, -0.07
    print("=====输入值:x1, x2;真实输出值:y1, y2=====")
    print(x1, x2, y1, y2)
    print("=====更新前的权值=====")
    print(round(w1, 2), round(w2, 2), round(w3, 2), round(w4, 2), round(w5, 2), round(w6, 2), round(w7, 2),
          round(w8, 2))

    for i in range(1000):
        print("=====第" + str(i) + "轮=====")
        out_o1, out_o2, out_h1, out_h2 = forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8)
        d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8 = back_propagate(out_o1, out_o2, out_h1, out_h2)
        w1, w2, w3, w4, w5, w6, w7, w8 = update_w(w1, w2, w3, w4, w5, w6, w7, w8)

    print("更新后的权值")
    print(round(w1, 2), round(w2, 2), round(w3, 2), round(w4, 2), round(w5, 2), round(w6, 2), round(w7, 2),
          round(w8, 2))

结果:


=====第10轮=====
正向计算:o1 ,o2
0.2987 0.16277
损失函数:均方误差
0.02945
反向传播:误差传给每个权值
0.0029 0.00252 0.00174 0.00151 0.00724 0.01596 0.00637 0.01405


=====第100轮=====
正向计算:o1 ,o2
0.23239 0.04193
损失函数:均方误差
0.00627
反向传播:误差传给每个权值
0.00027 0.00023 0.00016 0.00014 0.00019 0.00201 0.00017 0.00178


=====第999轮=====
正向计算:o1 ,o2
0.23038 0.00954
损失函数:均方误差
0.00316
反向传播:误差传给每个权值
4e-05 3e-05 2e-05 2e-05 3e-05 0.00029 2e-05 0.00026
更新后的权值
-0.84 -1.3 -0.13 0.06 -1.55 -7.31 -1.75 -5.23


pytorch版

import torch

x1, x2 = torch.Tensor([0.5]), torch.Tensor([0.3])
y1, y2 = torch.Tensor([0.23]), torch.Tensor([-0.07])
print("=====输入值:x1, x2;真实输出值:y1, y2=====")
print(x1, x2, y1, y2)
w1, w2, w3, w4, w5, w6, w7, w8 = torch.Tensor([0.2]), torch.Tensor([-0.4]), torch.Tensor([0.5]), torch.Tensor(
    [0.6]), torch.Tensor([0.1]), torch.Tensor([-0.5]), torch.Tensor([-0.3]), torch.Tensor([0.8])  # 权重初始值
w1.requires_grad = True
w2.requires_grad = True
w3.requires_grad = True
w4.requires_grad = True
w5.requires_grad = True
w6.requires_grad = True
w7.requires_grad = True
w8.requires_grad = True


def sigmoid(z):
    a = 1 / (1 + torch.exp(-z))
    return a


def forward_propagate(x1, x2):
    in_h1 = w1 * x1 + w3 * x2
    out_h1 = sigmoid(in_h1)  # out_h1 = torch.sigmoid(in_h1)
    in_h2 = w2 * x1 + w4 * x2
    out_h2 = sigmoid(in_h2)  # out_h2 = torch.sigmoid(in_h2)

    in_o1 = w5 * out_h1 + w7 * out_h2
    out_o1 = sigmoid(in_o1)  # out_o1 = torch.sigmoid(in_o1)
    in_o2 = w6 * out_h1 + w8 * out_h2
    out_o2 = sigmoid(in_o2)  # out_o2 = torch.sigmoid(in_o2)

    print("正向计算:o1 ,o2")
    print(out_o1.data, out_o2.data)

    return out_o1, out_o2


def loss_fuction(x1, x2, y1, y2):  # 损失函数
    y1_pred, y2_pred = forward_propagate(x1, x2)  # 前向传播
    loss = (1 / 2) * (y1_pred - y1) ** 2 + (1 / 2) * (y2_pred - y2) ** 2  # 考虑 : t.nn.MSELoss()
    print("损失函数(均方误差):", loss.item())
    return loss


def update_w(w1, w2, w3, w4, w5, w6, w7, w8):
    # 步长
    step = 1
    w1.data = w1.data - step * w1.grad.data
    w2.data = w2.data - step * w2.grad.data
    w3.data = w3.data - step * w3.grad.data
    w4.data = w4.data - step * w4.grad.data
    w5.data = w5.data - step * w5.grad.data
    w6.data = w6.data - step * w6.grad.data
    w7.data = w7.data - step * w7.grad.data
    w8.data = w8.data - step * w8.grad.data
    w1.grad.data.zero_()  # 注意:将w中所有梯度清零
    w2.grad.data.zero_()
    w3.grad.data.zero_()
    w4.grad.data.zero_()
    w5.grad.data.zero_()
    w6.grad.data.zero_()
    w7.grad.data.zero_()
    w8.grad.data.zero_()
    return w1, w2, w3, w4, w5, w6, w7, w8


if __name__ == "__main__":

    print("=====更新前的权值=====")
    print(w1.data, w2.data, w3.data, w4.data, w5.data, w6.data, w7.data, w8.data)

    for i in range(1000):
        print("=====第" + str(i) + "轮=====")
        L = loss_fuction(x1, x2, y1, y2)  # 前向传播,求 Loss,构建计算图
        L.backward()  # 自动求梯度,不需要人工编程实现。反向传播,求出计算图中所有梯度存入w中
        print("\tgrad W: ", round(w1.grad.item(), 2), round(w2.grad.item(), 2), round(w3.grad.item(), 2),
              round(w4.grad.item(), 2), round(w5.grad.item(), 2), round(w6.grad.item(), 2), round(w7.grad.item(), 2),
              round(w8.grad.item(), 2))
        w1, w2, w3, w4, w5, w6, w7, w8 = update_w(w1, w2, w3, w4, w5, w6, w7, w8)

    print("更新后的权值")
    print(w1.data, w2.data, w3.data, w4.data, w5.data, w6.data, w7.data, w8.data)

结果:


=====第10轮=====
正向计算:o1 ,o2
tensor([0.4047]) tensor([0.3507])
损失函数(均方误差): 0.10375461727380753
    grad W:  -0.02 -0.0 -0.01 -0.0 0.02 0.06 0.02 0.05


=====第100轮=====
正向计算:o1 ,o2
tensor([0.2375]) tensor([0.0730])
损失函数(均方误差): 0.010253453627228737
    grad W:  -0.0 -0.0 -0.0 -0.0 0.0 0.01 0.0 0.01


=====第999轮=====
正向计算:o1 ,o2
tensor([0.2296]) tensor([0.0098])
损失函数(均方误差): 0.0031851977109909058
    grad W:  -0.0 -0.0 -0.0 -0.0 -0.0 0.0 -0.0 0.0
更新后的权值
tensor([1.6515]) tensor([0.1770]) tensor([1.3709]) tensor([0.9462]) tensor([-0.7798]) tensor([-4.2741]) tensor([-1.0236]) tensor([-2.1999])


对比:

pytorch的反向传播不用自己手动计算传递误差,但是在参数更新完成后要将梯度清零。

2、激活函数Sigmoid用PyTorch自带函数torch.sigmoid(),观察、总结并陈述。

def forward_propagate(x1, x2):
    in_h1 = w1 * x1 + w3 * x2
    out_h1 = torch.sigmoid(in_h1)  # out_h1 = torch.sigmoid(in_h1)
    in_h2 = w2 * x1 + w4 * x2
    out_h2 = torch.sigmoid(in_h2)  # out_h2 = torch.sigmoid(in_h2)

    in_o1 = w5 * out_h1 + w7 * out_h2
    out_o1 = torch.sigmoid(in_o1)  # out_o1 = torch.sigmoid(in_o1)
    in_o2 = w6 * out_h1 + w8 * out_h2
    out_o2 = torch.sigmoid(in_o2)  # out_o2 = torch.sigmoid(in_o2)

    print("正向计算:o1 ,o2")
    print(out_o1.data, out_o2.data)

    return out_o1, out_o2

结果:


=====第999轮=====
正向计算:o1 ,o2
tensor([0.2296]) tensor([0.0098])
损失函数(均方误差): 0.003185197012498975
    grad W:  -0.0 -0.0 -0.0 -0.0 -0.0 0.0 -0.0 0.0
更新后的权值
tensor([1.6515]) tensor([0.1770]) tensor([1.3709]) tensor([0.9462]) tensor([-0.7798]) tensor([-4.2741]) tensor([-1.0236]) tensor([-2.1999])


结果和自己写的sigmoid函数效果相同

 

3、激活函数Sigmoid改变为Relu,观察、总结并陈述。

def forward_propagate(x1, x2):
    in_h1 = w1 * x1 + w3 * x2
    out_h1 = torch.relu(in_h1)
    in_h2 = w2 * x1 + w4 * x2
    out_h2 = torch.relu(in_h2)

    in_o1 = w5 * out_h1 + w7 * out_h2
    out_o1 = torch.relu(in_o1)
    in_o2 = w6 * out_h1 + w8 * out_h2
    out_o2 = torch.relu(in_o2)

    print("正向计算:o1 ,o2")
    print(out_o1.data, out_o2.data)

    return out_o1, out_o2

 结果


=====第999轮=====
正向计算:o1 ,o2
tensor([0.2300]) tensor([0.])
损失函数(均方误差): 0.0024500000290572643
    grad W:  -0.0 0.0 -0.0 0.0 -0.0 0.0 0.0 0.0
更新后的权值
tensor([0.4287]) tensor([-0.4000]) tensor([0.6372]) tensor([0.6000]) tensor([0.5672]) tensor([-0.5000]) tensor([-0.3000]) tensor([0.8000])


第一,采用sigmoid等函数,算激活函数是(指数运算),计算量大;反向传播求误差梯度时,求导涉及除法,计算量相对大。而采用Relu激活函数,整个过程的计算量节省很多。

第二,对于深层网络,sigmoid函数反向传播时,很容易就会出现梯度消失的情况(在sigmoid接近饱和区时,变换太缓慢,导数趋于0),这种情况会造成信息丢失,梯度消失在网络层数多的时候尤其明显,从而无法完成深层网络的训练。

第三,ReLU会使一部分神经元的输出为0,这样就造成了网络的稀疏性,并且减少了参数的相互依存关系,缓解了过拟合问题的发生。

4、损失函数MSE用PyTorch自带函数 t.nn.MSELoss()替代,观察、总结并陈述。

def loss_fuction(x1, x2, y1, y2):
    y1_pred, y2_pred = forward_propagate(x1, x2)
    t = torch.nn.MSELoss()
    loss = t(y1_pred,y1) + t(y2_pred,y2)
    print("损失函数(均方误差):", loss.item())
    return loss

 结果:


=====第999轮=====
正向计算:o1 ,o2
tensor([0.2300]) tensor([0.])
损失函数(均方误差): 0.004900000058114529
    grad W:  -0.0 0.0 -0.0 0.0 -0.0 0.0 0.0 0.0
更新后的权值
tensor([0.4236]) tensor([-0.4000]) tensor([0.6342]) tensor([0.6000]) tensor([0.5720]) tensor([-0.5000]) tensor([-0.3000]) tensor([0.8000]) 


总结:

手写的均方误差还是比torch.nn.MSELoss()训练效果好一点。

5、损失函数MSE改变为交叉熵,观察、总结并陈述。

def loss_fuction(x1, x2, y1, y2):
    y1_pred, y2_pred = forward_propagate(x1, x2)
    loss_func = torch.nn.CrossEntropyLoss() # 创建交叉熵损失函数
    y_pred = torch.stack([y1_pred, y2_pred], dim=1)
    y = torch.stack([y1, y2], dim=1)
    loss = loss_func(y_pred, y) # 计算
    print("损失函数(交叉熵损失):", loss.item())
    return loss

 结果


=====第999轮=====
正向计算:o1 ,o2
tensor([0.9929]) tensor([0.0072])
损失函数(交叉熵损失): -0.018253758549690247
    grad W:  -0.0 -0.0 -0.0 -0.0 -0.0 0.0 -0.0 0.0
更新后的权值
tensor([2.2809]) tensor([0.6580]) tensor([1.7485]) tensor([1.2348]) tensor([3.8104]) tensor([-4.2013]) tensor([2.5933]) tensor([-2.0866])


         交叉熵损失在训练1000轮后是个负数,当网络输出的概率是0-1时,正数。可当网络输出大于1的数,就有可能变成负数。

6、改变步长,训练次数,观察、总结并陈述。

步长为1

训练5000轮


=====第4999轮=====
正向计算:o1 ,o2
tensor([0.2300]) tensor([0.0010])
损失函数(均方误差): 0.005036547780036926
    grad W:  -0.0 -0.0 -0.0 -0.0 -0.0 0.0 -0.0 0.0
更新后的权值
tensor([2.2794]) tensor([0.6878]) tensor([1.7477]) tensor([1.2527]) tensor([-0.6800]) tensor([-5.6410]) tensor([-0.9468]) tensor([-3.2652]) 


训练10000轮


 =====第9999轮=====
正向计算:o1 ,o2
tensor([0.2300]) tensor([0.0005])
损失函数(均方误差): 0.004965716972947121
    grad W:  -0.0 -0.0 -0.0 -0.0 -0.0 0.0 -0.0 0.0
更新后的权值
tensor([2.4531]) tensor([0.8572]) tensor([1.8519]) tensor([1.3543]) tensor([-0.6561]) tensor([-6.0367]) tensor([-0.9275]) tensor([-3.5846])


 步长为0.1

训练5000轮


 =====第4999轮=====
正向计算:o1 ,o2
tensor([0.2296]) tensor([0.0098])
损失函数(均方误差): 0.006370754446834326
    grad W:  -0.0 -0.0 -0.0 -0.0 -0.0 0.0 -0.0 0.0
更新后的权值
tensor([1.6543]) tensor([0.1820]) tensor([1.3726]) tensor([0.9492]) tensor([-0.7793]) tensor([-4.2709]) tensor([-1.0225]) tensor([-2.1971])


 训练10000轮


=====第9999轮=====
正向计算:o1 ,o2
tensor([0.2298]) tensor([0.0050])
损失函数(均方误差): 0.005628202576190233
    grad W:  -0.0 -0.0 -0.0 -0.0 -0.0 0.0 -0.0 0.0
更新后的权值
tensor([1.8500]) tensor([0.3256]) tensor([1.4900]) tensor([1.0354]) tensor([-0.7459]) tensor([-4.6866]) tensor([-0.9968]) tensor([-2.5165]) 


 步长为5

训练5000轮


=====第4999轮=====
正向计算:o1 ,o2
tensor([0.2300]) tensor([0.0002])
损失函数(均方误差): 0.004924994893372059
    grad W:  -0.0 -0.0 -0.0 -0.0 -0.0 0.0 -0.0 0.0
更新后的权值
tensor([2.6482]) tensor([1.0351]) tensor([1.9689]) tensor([1.4611]) tensor([-0.6280]) tensor([-6.5752]) tensor([-0.9151]) tensor([-4.0168]) 


训练10000轮


=====第9999轮=====
正向计算:o1 ,o2
tensor([0.2300]) tensor([8.6091e-05])
损失函数(均方误差): 0.004912060219794512
    grad W:  -0.0 -0.0 -0.0 -0.0 -0.0 0.0 -0.0 0.0
更新后的权值
tensor([2.8024]) tensor([1.2066]) tensor([2.0614]) tensor([1.5640]) tensor([-0.6095]) tensor([-6.9487]) tensor([-0.8996]) tensor([-4.3291]) 


 步长在1和5时,训练效果差不多,在0.1时稍差。

7、权值w1-w8初始值换为随机数,对比“指定权值”的结果,观察、总结并陈述。

w1, w2, w3, w4, w5, w6, w7, w8 = torch.randn(1, 1), torch.randn(1, 1), torch.randn(1, 1), torch.randn(1, 1), torch.randn(1, 1), torch.randn(1, 1), torch.randn(1, 1), torch.randn(1, 1) #权重初始值

 =====第999轮=====
正向计算:o1 ,o2
tensor([[0.2299]]) tensor([[0.0047]])
损失函数(均方误差): 0.0055844783782958984
    grad W:  -0.0 -0.0 -0.0 -0.0 -0.0 0.0 -0.0 0.0
更新后的权值
tensor([[1.3820]]) tensor([[1.1637]]) tensor([[1.9474]]) tensor([[0.7103]]) tensor([[-2.1091]]) tensor([[-4.3067]]) tensor([[0.6382]]) tensor([[-2.8800]])


 随机赋值也依然能训练到很好的结果

8、权值w1-w8初始值换为0,观察、总结并陈述。

w1, w2, w3, w4, w5, w6, w7, w8 = torch.Tensor([0]), torch.Tensor([0]), torch.Tensor([0]), torch.Tensor(
    [0]), torch.Tensor([0]), torch.Tensor([0]), torch.Tensor([0]), torch.Tensor([0])  # 权重初始值

=====第999轮=====
正向计算:o1 ,o2
tensor([0.2298]) tensor([0.0048])
损失函数(均方误差): 0.005598478484898806
    grad W:  -0.0 -0.0 -0.0 -0.0 -0.0 0.0 -0.0 0.0
更新后的权值
tensor([1.3603]) tensor([1.3603]) tensor([0.8162]) tensor([0.8162]) tensor([-0.8444]) tensor([-3.7221]) tensor([-0.8444]) tensor([-3.7221]) 


最终结果还是一样,权重初始值只绘影响网络收敛速度,并不会影响或微小影响网络的收敛结果。

9、全面总结反向传播原理和编码实现,认真写心得体会。

 1、numpy代码还是比较复杂,反向传播部分需要仔细一点,很容易把某个变量写错,而pytorch只需要一个backward()就可以搞定。

2、关于神经网络通过学习新增的理解是:
1)正则化,通过正则化可以解决noraml equation中的不满秩的问题即与其对应的过拟合问题。

2) 神经网络存在着欠拟合和过拟合的问题,解决问题一般是将所有数据分成三类,训练数据,交叉验证数据和测试数据,相应的会存在训练误差,交叉验证误差和测试误差三种。判断欠拟合和过拟合的方法是:如果训练误差很小,但是交叉验证误差很大,一般是过拟合;如训练误差和交叉验证的误差都比较大,且几乎相等,说明是欠拟合。

3)调整神经网络常用的几个方法:1) 获取更多的数据,修正过拟合。2)减少特征,修正过拟合(去除特征的相关性)。3)增加特征,修正欠拟合,4)加入多项式特征,修正欠拟合,5)加到正则化系数,修正过拟合,6)减小正则化系数,修正欠拟合。

3、关于超参数
1)BP神经网络我在学习的过程中模型参数主要觉得这几个需要关注(学习率,隐藏层神经元个数,隐藏层层数【默认为1】)
2)学习率一般范围是0.01-0.25,学习率太大容易过拟合,太小容易欠拟合,这里可以利用for循环,挨个试试,选取一个最好的参数。
3)隐藏层神经元有很多的经验公式确定,但是经验公式并不一定具有代表性,可以根据某个经验公式利用for进行尝试确定。
4)隐藏层层数这里就感觉要是模型输入参数复杂的话需要多设立一些,之前看的文献好像是十几个隐藏层,每层60个神经元,但是感觉有时候一层效果就整挺好。
 

参考

torch.sigmoid()、torch.nn.Sigmoid()和torch.nn.functional.sigmoid()三者之间的区别_沐风大大的博客-CSDN博客_torch.sigmoid

解释为什么BP神经网络中有的人使用二次代价函数,而有的人使用交叉熵_我曾记得曾经的博客-CSDN博客

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值