二叉树
定义
二叉树是n(n>=0)个结点的有限集合,该集合或者为空集(称为空二叉树),或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树组成。
图解

二叉树特点
由二叉树定义以及图示分析得出二叉树有以下特点:
- 每个结点最多有两颗子树,所以二叉树中不存在度大于2的结点。
- 左子树和右子树是有顺序的,次序不能任意颠倒。
- 即使树中某结点只有一棵子树,也要区分它是左子树还是右子树。
二叉树性质
由二叉树定义以及图示分析得出二叉树有以下性质:
-

-

-

-

-
若对含 n 个结点的完全二叉树从上到下且从左至右进行 1 至 n 的编号,则对完全二叉树中任意一个编号为 i 的结点有如下特性:
- 若 i=1,则该结点是二叉树的根,无双亲, 否则,编号为 [i/2] 的结点为其双亲结点;
- 若 2i>n,则该结点无左孩子, 否则,编号为 2i 的结点为其左孩子结点;
- 若 2i+1>n,则该结点无右孩子结点, 否则,编号为2i+1 的结点为其右孩子结点。
斜树
定义
斜树:所有的结点都只有左子树的二叉树叫左斜树。所有结点都是只有右子树的二叉树叫右斜树。这两者统称为斜树。

满二叉树
图解

定义
满二叉树:在一棵二叉树中。如果所有分支结点都存在左子树和右子树,并且所有叶子都在同一层上,这样的二叉树称为满二叉树。
满二叉树的特点
满二叉树的特点有:
- 叶子只能出现在最下一层。出现在其它层就不可能达成平衡。
- 非叶子结点的度一定是2。
- 在同样深度的二叉树中,满二叉树的结点个数最多,叶子数最多。
完全二叉树
图解

定义
完全二叉树:对一颗具有n个结点的二叉树按层编号,如果编号为i(1<=i<=n)的结点与同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同,则这棵二叉树称为完全二叉树。
完全二叉树特点
特点:
- 叶子结点只能出现在最下层和次下层。
- 最下层的叶子结点集中在树的左部。
- 倒数第二层若存在叶子结点,一定在右部连续位置。
- 如果结点度为1,则该结点只有左孩子,即没有右子树。
- 同样结点数目的二叉树,完全二叉树深度最小。
- 注:满二叉树一定是完全二叉树,但反过来不一定成立。
二叉树的存储结构
定义
二叉树的顺序存储结构就是使用一维数组存储二叉树中的结点,并且结点的存储位置,就是数组的下标索引。
图解

如图一棵完全二叉树按照顺序存储:
二叉树遍历
定义
二叉树的遍历是指从二叉树的根结点出发,按照某种次序依次访问二叉树中的所有结点,使得每个结点被访问一次,且仅被访问一次。
访问次序
二叉树的访问次序可以分为四种:
- 前序遍历 根结点 > 左子树 > 右子树
- 中序遍历 左子树> 根结点 > 右子树
- 后序遍历 左子树 > 右子树 > 根结点
- 层序遍历 仅仅需按层次遍历就可以
图解

前序遍历
定义
前序遍历通俗的说就是从二叉树的根结点出发,当第一次到达结点时就输出结点数据,按照先向左在向右的方向访问。
遍历流程
1、从根结点出发,则第一次到达结点A,故输出A;
2、继续向左访问,第一次访问结点B,故输出B;
3、按照同样规则,输出D,输出H;
4、当到达叶子结点H,返回到D,此时已经是第二次到达D,故不在输出D,进而向D右子树访问,D右子树不为空,则访问至I,第一次到达I,则输出I;
5、I为叶子结点,则返回到D,D左右子树已经访问完毕,则返回到B,进而到B右子树,第一次到达E,故输出E;
6、向E左子树,故输出J;
7、按照同样的访问规则,继续输出C、F、G;
遍历结果
前序遍历输出为:ABDHIEJCFG
中序遍历
定义
中序遍历就是从二叉树的根结点出发,当第二次到达结点时就输出结点数据,按照先向左在向右的方向访问。
遍历流程
1、从根结点出发,则第一次到达结点A,不输出A,继续向左访问,第一次访问结点B,不输出B;继续到达D,H;
2、到达H,H左子树为空,则返回到H,此时第二次访问H,故输出H;
3、H右子树为空,则返回至D,此时第二次到达D,故输出D;
4、由D返回至B,第二次到达B,故输出B;
5、按照同样规则继续访问,输出J、E、A、F、C、G;
遍历结果
中序遍历输出为:HDIBJEAFCG
最后
既已说到spring cloud alibaba,那对于整个微服务架构,如果想要进一步地向上提升自己,到底应该掌握哪些核心技能呢?
就个人而言,对于整个微服务架构,像RPC、Dubbo、Spring Boot、Spring Cloud Alibaba、Docker、kubernetes、Spring Cloud Netflix、Service Mesh等这些都是最最核心的知识,架构师必经之路!下图,是自绘的微服务架构路线体系大纲,如果有还不知道自己该掌握些啥技术的朋友,可根据小编手绘的大纲进行一个参考。

如果觉得图片不够清晰,也可来找小编分享原件的xmind文档!
且除此份微服务体系大纲外,我也有整理与其每个专题核心知识点对应的最强学习笔记:
-
出神入化——SpringCloudAlibaba.pdf
-
SpringCloud微服务架构笔记(一).pdf
-
SpringCloud微服务架构笔记(二).pdf
-
SpringCloud微服务架构笔记(三).pdf
-
SpringCloud微服务架构笔记(四).pdf
-
Dubbo框架RPC实现原理.pdf
-
Dubbo最新全面深度解读.pdf
-
Spring Boot学习教程.pdf
-
SpringBoo核心宝典.pdf
-
第一本Docker书-完整版.pdf
-
使用SpringCloud和Docker实战微服务.pdf
-
K8S(kubernetes)学习指南.pdf
需要下载的请**点击传送门:《出神入化——SpringCloudAlibaba》**

另外,如果不知道从何下手开始学习呢,小编这边也有对每个微服务的核心知识点手绘了其对应的知识架构体系大纲,不过全是导出的xmind文件,全部的源文件也都在此,照样可免费分享给有需要的你!
化——SpringCloudAlibaba》](https://gitee.com/vip204888/java-p7)**
[外链图片转存中…(img-OSRNAxyE-1626252218992)]
另外,如果不知道从何下手开始学习呢,小编这边也有对每个微服务的核心知识点手绘了其对应的知识架构体系大纲,不过全是导出的xmind文件,全部的源文件也都在此,照样可免费分享给有需要的你!

本文详细介绍了二叉树的概念,包括二叉树的定义、特点、性质,以及满二叉树、完全二叉树和斜树的定义和特点。还探讨了二叉树的存储结构和遍历方式,包括前序遍历和中序遍历的定义、流程和结果。文章适合准备Java后端面试的开发者参考。
409

被折叠的 条评论
为什么被折叠?



