CPO-LSSVM-ABKDE冠豪猪优化算法优化最小二乘支持向量机结合自适应带宽核函数密度估计的多变量区间预测

本文介绍了使用CPO-LSSVM-ABKDE方法,结合冠豪猪优化算法优化最小二乘支持向量机,并应用自适应带宽核函数密度估计进行多变量区间预测。提供的Matlab代码可直接运行,适用于matlab2021及以上版本,注释清晰,方便新手使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CPO-LSSVM-ABKDE冠豪猪优化算法优化最小二乘支持向量机结合自适应带宽核函数密度估计的多变量区间预测

效果分析

1

基本介绍

CPO-LSSVM-ABKDE冠豪猪优化算法优化最小二乘支持向量机结合自适应带宽核函数密度估计的多变量区间预测。 Matlab可直接运行 注释清晰 可直接运行 Matlab。运行环境matlab2021及以上

直接替换Excel数据即可用!注释清晰,适合新手小白~

CPO-LSSVM-ABKDE冠豪猪优化算法优化最小二乘支持向量机结合自适应带宽核函数密度估计的多变量区间预测。 Matlab可直接运行 注释清晰 可直接运行 Matlab。运行环境matlab2021及以上

直接替换Excel数据即可用!注释清晰,适合新手小白~

CPO-LSSVM-ABKDE冠豪猪优化算法优化最小二乘支持向量机结合自适应带宽核函数密度估计的多变量区间预测。 Matlab可直接运行 注释清晰 可直接运行 Matlab。运行环境matlab2021及以上

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前程算法屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值