CPO-LSSVM回归预测与SHAP可解释性分析的完整Matlab代码

在这里插入图片描述


一、CPO-LSSVM回归预测框架

1. 算法原理
  • LSSVM回归:将SVM不等式约束转为等式约束,通过求解线性方程组实现:

  • CPO优化:通过豪猪防御策略优化LSSVM的核参数 sig 和正则化参数 gam

2. 代码实现
%% 数据预处理
data = xlsread('data.xlsx'); 
input = data(:,1:end-1); output = data(:,end); 
[inputn, inputps] = mapminmax(input'); 
[outputn, outputps] = mapminmax(output'); 
inputn = inputn'; outputn = outputn';

%% CPO参数优化

cpo_option.maxgen = 100;    % 最大迭代次数
cpo_option.sizepop = 20;   % 种群规模
cpo_option.lb = [0.1, 0.1];% gam/sig下界
cpo_option.ub = [150, 10]; % gam/sig上界
cpo_option.c1 = 2;         % 加速因子
cpo_option.c2 = 2;

%% CPO优化目标函数
fobj = @(x)lssvm_fitness(x, inputn, outputn); % 定义适应度函数
[best_params, best_fitness] = CPO(cpo_option, fobj);
gam = best_params(1); sig = best_params(2);

%% LSSVM模型训练
model = initlssvm(inputn, outputn, 'function estimation', gam, sig, 'RBF_kernel');
model = trainlssvm(model);

%% 预测及反归一化
predict = simlssvm(model, inputn);
predict = mapminmax('reverse', predict, outputps);
3. 关键函数
function fitness = lssvm_fitness(params, X, Y)
    gam = params(1); sig = params(2);
   
        model = trainlssvm(model);
        y_pred = simlssvm(model, X(test_idx,:));
        mse(i) = mean((y_pred - Y(test_idx)).^2); 
    end
    fitness = mean(mse); % 目标是最小化MSE
end

二、SHAP可解释性分析集成

1. SHAP原理
  • 基于博弈论的加性解释模型:y^=ϕ0+∑i=1Mϕi\hat{y} = \phi_0 + \sum_{i=1}^M \phi_iy^=ϕ0+i=1Mϕi
  • ϕi>0\phi_i>0ϕi>0 表示特征正向影响预测值,ϕi<0\phi_i<0ϕi<0 表示负向影响
2. Matlab编程实现


%% 可视化分析
shap.summary_plot(shap_values, X_train); % 特征全局重要性
shap.dependence_plot(1, shap_values, X_train); % 特征1的依赖关系

function phi = shap_local(model, x_sample, X_ref)
    % 基于的加性解释公式
    K = kernel_matrix(X_ref, model.kernel, model.kernel_pars);
    f0 = mean(model.alpha' * K + model.b); % 基准值φ0
    
    phi = zeros(1, size(x_sample,2));
    for i=1:length(phi)
        permuted_x = X_ref;
        permuted_x(:,i) = x_sample(i); % 置换第i个特征
        K_perm = kernel_matrix(permuted_x, model.kernel, model.kernel_pars);
        f_perm = mean(model.alpha' * K_perm + model.b);
        phi(i) = f_perm - f0; % 特征i的贡献度
    end
end

三、关键技术创新点

  1. 双阶段优化机制

    • CPO全局搜索避免LSSVM陷入局部最优
    • SHAP提供预测结果的数学可解释性
  2. 可视化分析体系

    %% 综合结果可视化
    figure
    subplot(2,2,1)
    plot(output, 'b-'); hold on; plot(predict, 'r--'); 
    legend('真实值','CPO-LSSVM预测值')
    
    subplot(2,2,2)
    bar(mean(abs(shap_values))); % 特征全局重要性
    
    subplot(2,2,3)
    scatter(input(:,1), shap_values(:,1)); % 特征1的SHAP依赖图
    
    subplot(2,2,4)
    plot(1:cpo_option.maxgen, convergence_curve); % CPO收敛曲线
    
    • 输出包含:预测对比图、SHAP特征重要性、依赖关系图、算法收敛曲线

参考文献

  1. 豪猪算法优化原理
  2. LSSVM回归数学推导
  3. SHAP的博弈论基础
  4. Matlab-Python接口配置
  5. 工业级参数设置
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前程算法屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值