
一、CPO-LSSVM回归预测框架
1. 算法原理
-
LSSVM回归:将SVM不等式约束转为等式约束,通过求解线性方程组实现:
-
CPO优化:通过豪猪防御策略优化LSSVM的核参数
sig和正则化参数gam
2. 代码实现
%% 数据预处理
data = xlsread('data.xlsx');
input = data(:,1:end-1); output = data(:,end);
[inputn, inputps] = mapminmax(input');
[outputn, outputps] = mapminmax(output');
inputn = inputn'; outputn = outputn';
%% CPO参数优化
cpo_option.maxgen = 100; % 最大迭代次数
cpo_option.sizepop = 20; % 种群规模
cpo_option.lb = [0.1, 0.1];% gam/sig下界
cpo_option.ub = [150, 10]; % gam/sig上界
cpo_option.c1 = 2; % 加速因子
cpo_option.c2 = 2;
%% CPO优化目标函数
fobj = @(x)lssvm_fitness(x, inputn, outputn); % 定义适应度函数
[best_params, best_fitness] = CPO(cpo_option, fobj);
gam = best_params(1); sig = best_params(2);
%% LSSVM模型训练
model = initlssvm(inputn, outputn, 'function estimation', gam, sig, 'RBF_kernel');
model = trainlssvm(model);
%% 预测及反归一化
predict = simlssvm(model, inputn);
predict = mapminmax('reverse', predict, outputps);
3. 关键函数
function fitness = lssvm_fitness(params, X, Y)
gam = params(1); sig = params(2);
model = trainlssvm(model);
y_pred = simlssvm(model, X(test_idx,:));
mse(i) = mean((y_pred - Y(test_idx)).^2);
end
fitness = mean(mse); % 目标是最小化MSE
end
二、SHAP可解释性分析集成
1. SHAP原理
- 基于博弈论的加性解释模型:y^=ϕ0+∑i=1Mϕi\hat{y} = \phi_0 + \sum_{i=1}^M \phi_iy^=ϕ0+∑i=1Mϕi
- ϕi>0\phi_i>0ϕi>0 表示特征正向影响预测值,ϕi<0\phi_i<0ϕi<0 表示负向影响
2. Matlab编程实现
%% 可视化分析
shap.summary_plot(shap_values, X_train); % 特征全局重要性
shap.dependence_plot(1, shap_values, X_train); % 特征1的依赖关系
function phi = shap_local(model, x_sample, X_ref)
% 基于的加性解释公式
K = kernel_matrix(X_ref, model.kernel, model.kernel_pars);
f0 = mean(model.alpha' * K + model.b); % 基准值φ0
phi = zeros(1, size(x_sample,2));
for i=1:length(phi)
permuted_x = X_ref;
permuted_x(:,i) = x_sample(i); % 置换第i个特征
K_perm = kernel_matrix(permuted_x, model.kernel, model.kernel_pars);
f_perm = mean(model.alpha' * K_perm + model.b);
phi(i) = f_perm - f0; % 特征i的贡献度
end
end
三、关键技术创新点
-
双阶段优化机制
- CPO全局搜索避免LSSVM陷入局部最优
- SHAP提供预测结果的数学可解释性
-
可视化分析体系
%% 综合结果可视化 figure subplot(2,2,1) plot(output, 'b-'); hold on; plot(predict, 'r--'); legend('真实值','CPO-LSSVM预测值') subplot(2,2,2) bar(mean(abs(shap_values))); % 特征全局重要性 subplot(2,2,3) scatter(input(:,1), shap_values(:,1)); % 特征1的SHAP依赖图 subplot(2,2,4) plot(1:cpo_option.maxgen, convergence_curve); % CPO收敛曲线- 输出包含:预测对比图、SHAP特征重要性、依赖关系图、算法收敛曲线
参考文献:
- 豪猪算法优化原理
- LSSVM回归数学推导
- SHAP的博弈论基础
- Matlab-Python接口配置
- 工业级参数设置
576

被折叠的 条评论
为什么被折叠?



