#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define N 10050
int n,m,s,t;
int num=1;
int head[N];
struct node
{
int next;
int to;
int w;
}edge[N*N];
void add(int u,int v,int w)
{
edge[++num].next=head[u];
edge[num].to=v;
edge[num].w=w;
head[u]=num;
}
int deep[N];
queue<int>q;
int bfs()
{
memset(deep,0,sizeof(deep));
q.push(s);
deep[s]=1;
while(q.size())
{
int u=q.front();
q.pop();
for(int i=head[u];i;i=edge[i].next)
{
int w=edge[i].w;
int v=edge[i].to;
if(!deep[v]&&w)
{
q.push(v);
deep[v]=deep[u]+1;
}
}
}
return deep[t];
}
long long dfs(int u,long long in)
{
if(u==t) //已经到达会点
return in;
long long out=0;
for(int i=head[u];i
dinic(摧毁道路)
最新推荐文章于 2025-03-31 17:10:15 发布
本文深入探讨了Dinic算法,一种用于求解最大流问题的高效算法。通过理解其基本思想和流程,读者将能掌握如何在图中找到最大的流量路径,仿佛在‘摧毁’阻挡最大流的道路。

最低0.47元/天 解锁文章

732

被折叠的 条评论
为什么被折叠?



