题目:

解题思路及过程
此题非常地容易理解,就是输入一个数N,求这个数N的N次方的个位数。显然,这题不能直接求出N的N次方然后再取个位数,这很明显会超出数据范围。那么,不妨换一种思路。每次相乘一次N,取出个位,然后再乘N,再取个位。这种思路可以保证不会超过数据范围,但是此种思路只适用于N不太大时,当N很大时,例如当N等于1 000 000 000时,经过十亿次循环,很明显会TLE(超时)。因此此方法适用于循环次数不庞大的循环。
下面附上我的准暴力思想核心代码:
int main()
{
int N,t,t1,i=1;
cin>>N;
t=N%10; // 个位数
t1=t; // 新的个位数
while(i<=N-1)
{
t1=(t1*N)%10; // t1=(t1*t)%10;
i++;
}
cout<<t1<<endl;
}
但是,该题目给出N的范围为 N∈[1,1 000 000 000] ,因此采用上述方法无法解决此问题。那么这时我们就要想了,既然是求个位数嘛,所以当一个数多次乘以自身时,只看个位数的话,一定会出现循环,且0~9均满足。例如 2->4->8->6->2,3->9->7->1->3,7->9->3->1->7 等等均满足这个规律。那么此问题就可以化为找规律题目就很简单了。话不多说,直接上完整AC代码:
code:
#include<iostream>
using namespace std;
int main()
{
int N,t,t1,i,c,a[10]={0},b,o,T;
cin>>T;
while(T--)
{
c=1; // 测试每个新的样例,c都重新从1开始
for(i=0;i<10;i++)
a[i]=0; // 避免数组存储空间被污染
cin>>N;
t=N%10; // 个位数
t1=t; // 新的个位数
while(1)
{
a[0]=t;
t1=(t1*t)%10;
a[c++]=t1;
if(t1==t)
break; // 第一次出现相同的数立刻退出循环,表明出现了一个完整的循环。
}
b=N%(c-1); // 找余数,若余数为0则为循环的最后一个元素。
if(b!=0)
cout<<a[b-1]<<endl;
else
cout<<a[c-2]<<endl;
}
return 0;
}
本文探讨了解决一个编程问题:给定一个大数N,如何快速找到其N次方的个位数。通过理解数字循环规律,提出了一种优化算法,避免了暴力循环带来的超时问题。关键在于发现并利用个位数的循环性质,适用于N在给定范围内的高效计算。
3753

被折叠的 条评论
为什么被折叠?



