找规律——计算N的N次幂的个位数

本文探讨了解决一个编程问题:给定一个大数N,如何快速找到其N次方的个位数。通过理解数字循环规律,提出了一种优化算法,避免了暴力循环带来的超时问题。关键在于发现并利用个位数的循环性质,适用于N在给定范围内的高效计算。
摘要由CSDN通过智能技术生成

题目:

 解题思路及过程

此题非常地容易理解,就是输入一个数N,求这个数N的N次方的个位数。显然,这题不能直接求出N的N次方然后再取个位数,这很明显会超出数据范围。那么,不妨换一种思路。每次相乘一次N,取出个位,然后再乘N,再取个位。这种思路可以保证不会超过数据范围,但是此种思路只适用于N不太大时,当N很大时,例如当N等于1 000 000 000时,经过十亿次循环,很明显会TLE(超时)。因此此方法适用于循环次数不庞大的循环。

下面附上我的准暴力思想核心代码:

int main()
{
	int N,t,t1,i=1;
	cin>>N;
	t=N%10; // 个位数
	t1=t; // 新的个位数 
	while(i<=N-1)
	{
	t1=(t1*N)%10; // t1=(t1*t)%10; 
	i++;
	}
	cout<<t1<<endl;
}

但是,该题目给出N的范围为 N∈[1,1 000 000 000] ,因此采用上述方法无法解决此问题。那么这时我们就要想了,既然是求个位数嘛,所以当一个数多次乘以自身时,只看个位数的话,一定会出现循环,且0~9均满足。例如 2->4->8->6->2,3->9->7->1->3,7->9->3->1->7 等等均满足这个规律。那么此问题就可以化为找规律题目就很简单了。话不多说,直接上完整AC代码:

code:

#include<iostream>
using namespace std;

int main()
{
	int N,t,t1,i,c,a[10]={0},b,o,T;
	cin>>T;
	while(T--)
	{
	c=1; // 测试每个新的样例,c都重新从1开始 
	for(i=0;i<10;i++)
	    a[i]=0; // 避免数组存储空间被污染 
	cin>>N;
	t=N%10; // 个位数
	t1=t; // 新的个位数
	while(1)
	{
	    a[0]=t;
		t1=(t1*t)%10;
		a[c++]=t1;
		if(t1==t)
		break; // 第一次出现相同的数立刻退出循环,表明出现了一个完整的循环。 
	}
    b=N%(c-1); // 找余数,若余数为0则为循环的最后一个元素。

	if(b!=0)
	cout<<a[b-1]<<endl;
	else
	cout<<a[c-2]<<endl;
    }
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>