题目链接:P1115 最大子段和 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)
题目描述
给出一个长度为 n 的序列 a,选出其中连续且非空的一段使得这段和最大。
输入格式
第一行是一个整数,表示序列的长度 n。
第二行有 n 个整数,第 i 个整数表示序列的第 i 个数字 ai。
输出格式
输出一行一个整数表示答案。
样例 #1
样例输入 #1
7
2 -4 3 -1 2 -4 3
样例输出 #1
4
提示
样例 1 解释
选取 [3, 5] 子段 {3, -1, 2},其和为 4。
数据规模与约定
- 对于 40% 的数据,保证 n ≤ 2 × 10^3。
- 对于 100% 的数据,保证 1 ≤ n ≤ 2 × 10^5,−10^4 ≤ ai ≤ 10^4。
AC code 1:(动态规划,线性dp)——使用dp数组存放每一个状态
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
int main()
{
int n;
cin>>n;
vector<int> a(n);
for(int i = 0 ; i < n ; i ++)
cin>>a[i];
vector<int> dp(n); // dp[i] 表示以下标 i 结尾的最大字段和
dp[0] = a[0];
int res = dp[0];
for(int i = 1 ; i < n ; i ++)
{
dp[i] = max(dp[i - 1] + a[i] , a[i]);
res = max(res , dp[i]);
}
cout<<res;
return 0;
}
AC code 2: (发现每次只需要使用上一个状态(dp[i - 1]),因此可以直接使用一个变量保存上一个状态即可,减少额外的空间开销)
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
int main()
{
int n;
cin>>n;
vector<int> a(n);
for(int i = 0 ; i < n ; i ++)
cin>>a[i];
int temp = a[0];
int res = temp;
for(int i = 1 ; i < n ; i ++)
{
temp = max(temp + a[i] , a[i]);
res = max(res , temp);
}
cout<<res;
return 0;
}
当然,这题也可以使用更为精妙的“分治”思想求解。
文章介绍了如何使用动态规划和空间优化的方法解决找到一个整数序列中连续子段的最大和问题。提供了两种解决方案,一种是使用dp数组记录每个状态,另一种是仅用一个变量存储上一个状态以减少空间开销。此外,还提及了可以使用分治思想来求解此问题。
2226

被折叠的 条评论
为什么被折叠?



