一、简介
PCA算法是基于图像重构的方法进行图像特征识别的。内有训练样本、多个测试图片以及文档说明。
识别步骤:
① 选择训练样本
② 计算样本平均数字特征,数字特征空间
③ 读取待识别数字,进行连通分量分割,确定需要识别数字个数
④ 通过判别式进行分类
二、源代码
clear all
clc
close all
% 选择训练数据、测试数据路径(即目录TrainData和TestData)
TrainDatabasePath = uigetdir('D:\Program Files\MATLAB\R2007b\work', '选择[训练数据]路径' );
TestDatabasePath = uigetdir('D:\Program Files\MATLAB\R2007b\work', '选择[测试数据]路径');
prompt = {'输入测试图像名字(1、2):'};
dlg_title = 'PCA识别输入';
num_lines= 1;
def = {'1'};
TestImage = inputdlg(prompt,dlg_title,num_lines,def);
TestImage = strcat(TestDatabasePath,'\',char(TestImage),'.jpg');
im = imread(TestImage);
T = CreateDatabase(TrainDatabasePath);%创建测试数据库
[m, A, EigenPos] = PCA(T);
OutputName = Recognition(TestImage, m, A, EigenPos);%识别输出匹配图像
SelectedImage = strcat(TrainDatabasePath,'\',OutputName);
SelectedImage = imread(SelectedImage);
imshow(im)
title('测试图像');
figure,imshow(SelectedImage);
title('等价图像');
unction OutputName = Recognition(TestImage, m, A, EigenPos)
% 识别操作:比较两图像,通过将图像映射到特征空间,并测量两者间的欧式距离
% 参数:TestImage 输入测试图像路径
% m (M*Nx1) 训练数据库的均值
% EigenPos (M*Nx(P-1)) 训练数据的协方差矩阵特征向量
% A (M*NxP) 居中的图像向量矩阵
% 返回:OutputName 训练数据库中被识别出来的图像名字
% 所有居中的图像通过乘以Eigenfaces来进行映射,每一副图的映射向量将是对应的特征向量
ProjectedImages = [];
Train_Number = size(EigenPos,2);
for i = 1 : Train_Number
temp = EigenPos'*A(:,i); %居中的图像映射
ProjectedImages = [ProjectedImages temp];
end
% 从测试图像中提取出PCA特征
InputImage = imread(TestImage);
temp = InputImage(:,:,1);
[irow icol] = size(temp);
Difference = double(InImage)-m; % 居中的测试图像
ProjectedTestImage = EigenPos'*Difference; % 测试图像特征向量
% 计算被映射的测试图像与所有居中的训练图像投影之间的欧式距离
% 设定测度图像与训练数据库中相应图像有最小距离
Euc_dist = [];
for i = 1 : Train_Number
q = ProjectedImages(:,i);
temp = ( norm( ProjectedTestImage - q ) )^2;
Euc_dist = [Euc_dist temp];
end
三、运行结果
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类


1466

被折叠的 条评论
为什么被折叠?



