基于PCA手写数字识别matlab 源码

 一、简介

PCA算法是基于图像重构的方法进行图像特征识别的。内有训练样本、多个测试图片以及文档说明。
识别步骤:
① 选择训练样本
② 计算样本平均数字特征,数字特征空间
③ 读取待识别数字,进行连通分量分割,确定需要识别数字个数
④ 通过判别式进行分类

二、源代码

clear all
clc
close all
 
% 选择训练数据、测试数据路径(即目录TrainData和TestData)
TrainDatabasePath = uigetdir('D:\Program Files\MATLAB\R2007b\work', '选择[训练数据]路径' );
TestDatabasePath = uigetdir('D:\Program Files\MATLAB\R2007b\work', '选择[测试数据]路径');
 
prompt = {'输入测试图像名字(1、2):'};
dlg_title = 'PCA识别输入';
num_lines= 1;
def = {'1'};
 
TestImage  = inputdlg(prompt,dlg_title,num_lines,def);
TestImage = strcat(TestDatabasePath,'\',char(TestImage),'.jpg');
im = imread(TestImage);
 
T = CreateDatabase(TrainDatabasePath);%创建测试数据库
[m, A, EigenPos] = PCA(T);
OutputName = Recognition(TestImage, m, A, EigenPos);%识别输出匹配图像
 
SelectedImage = strcat(TrainDatabasePath,'\',OutputName);
SelectedImage = imread(SelectedImage);
 
imshow(im)
title('测试图像');
figure,imshow(SelectedImage);
title('等价图像');
unction OutputName = Recognition(TestImage, m, A, EigenPos)
% 识别操作:比较两图像,通过将图像映射到特征空间,并测量两者间的欧式距离
% 参数:TestImage 输入测试图像路径
%       m   (M*Nx1) 训练数据库的均值
%      EigenPos   (M*Nx(P-1)) 训练数据的协方差矩阵特征向量
%       A     (M*NxP) 居中的图像向量矩阵 
% 返回:OutputName  训练数据库中被识别出来的图像名字            
 
% 所有居中的图像通过乘以Eigenfaces来进行映射,每一副图的映射向量将是对应的特征向量
ProjectedImages = [];
Train_Number = size(EigenPos,2);
for i = 1 : Train_Number
    temp = EigenPos'*A(:,i); %居中的图像映射
    ProjectedImages = [ProjectedImages temp]; 
end
 
% 从测试图像中提取出PCA特征
InputImage = imread(TestImage);
temp = InputImage(:,:,1);
 
[irow icol] = size(temp);
Difference = double(InImage)-m; % 居中的测试图像
ProjectedTestImage = EigenPos'*Difference; % 测试图像特征向量
 
% 计算被映射的测试图像与所有居中的训练图像投影之间的欧式距离
% 设定测度图像与训练数据库中相应图像有最小距离
Euc_dist = [];
for i = 1 : Train_Number
    q = ProjectedImages(:,i);
    temp = ( norm( ProjectedTestImage - q ) )^2;
    Euc_dist = [Euc_dist temp];
end

三、运行结果

在这里插入图片描述

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁 私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP置换流水车间调度问题PFSP混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值