以下是一道动态规划的经典题目:爬楼梯。
问题描述:
有一个楼梯,你每次可以爬 1 个台阶或者 2 个台阶。求爬到楼梯顶部一共有多少种不同的爬法。
分析:
- 当只有 1 个台阶时,只有一种爬法,即直接爬 1 步。
- 当有 2 个台阶时,有两种爬法,可以一次爬 2 步,也可以分两次每次爬 1 步。
- 对于 n 个台阶,可以从 n - 1 个台阶爬一步到达,也可以从 n - 2 个台阶爬两步到达。所以到达 n 个台阶的爬法总数等于到达 n - 1 个台阶的爬法总数加上到达 n - 2 个台阶的爬法总数。
代码实现(以 Python 为例):
def climbStairs(n):
if n == 1:
return 1
if n == 2:
return 2
dp = [0] * (n + 1)
dp[1] = 1
dp[2] = 2
for i in range(3, n + 1):
dp[i] = dp[i - 1] + dp[i - 2]
return dp[n]
你可以调用climbStairs(5)来测试爬 5 个台阶的不同爬法总数。
1237

被折叠的 条评论
为什么被折叠?



