在软件行业的快速发展中,Go 语言以其高效、简洁和强大的并发性能逐渐成为众多开发者的首选。最近我经历了一场 Go 语言相关的面试,其中涵盖了多个重要的技术领域。下面我将详细分享这次面试的过程和涉及的知识点。
一、一面:轻松开场,基础回顾
(一)自我介绍
在面试的一开始,进行了简单的自我介绍,主要介绍了自己的教育背景、工作经历以及对 Go 语言的热爱和掌握程度。
(二)Chan 相关问题
面试官询问了关于 Go 语言中通道(Chan)的一些问题。
- 通道是 Go 语言中用于在不同 goroutine 之间进行通信的重要机制。可以通过 make(chan type) 来创建一个特定类型的通道。
- 通道有两种主要的操作:发送数据 ch <- value 和接收数据 value := <-ch 。
- 可以使用无缓冲通道实现同步,当一个 goroutine 向无缓冲通道发送数据时,它会被阻塞,直到另一个 goroutine 从该通道接收数据。有缓冲通道则可以存储一定数量的数据,发送方在通道未满时不会被阻塞,接收方在通道不为空时不会被阻塞。
(三)Make 和 new 区别
这是一个基础但重要的问题。
- new 主要用于分配值类型的内存,并返回一个指向该类型的指针。例如 ptr := new(int) 会分配一个 int 类型的内存空间,并返回一个指向该空间的指针。
- make 用于初始化内置的数据结构,如切片、映射和通道,并返回一个初始化后的对象。例如 slice := make([]int, 0) 会创建一个空的 int 类型切片。
(四)项目问题
面试官询问了关于之前参与的 Go 语言项目的情况。包括项目的背景、目标、使用的技术栈以及自己在项目中承担的角色和贡献。这部分主要考察了实际项目经验和解决问题的能力。
二、二面:深入技术,挑战升级
(一)项目介绍
再次深入介绍了自己参与的项目,重点阐述了项目的架构、关键技术和遇到的挑战及解决方案。这部分不仅展示了技术能力,还体现了对项目的整体理解和规划能力。
(二)GPM 分别指什么,怎么运作的
GPM 是 Go 语言运行时系统的重要组成部分。
- G 代表 goroutine,是 Go 语言中的轻量级线程。Goroutine 由 Go 运行时管理,可以在多个操作系统线程上调度执行。
- P 代表处理器(Processor),负责调度 goroutine。每个 P 会管理一组 goroutine,并将它们分配给一个或多个 M(系统线程)执行。
- M 代表系统线程(Machine),实际执行 goroutine。M 会从全局队列或 P 的本地队列中获取 goroutine 并执行。
运作方式是,Go 运行时系统会创建多个 M,每个 M 会绑定一个 P。当一个新的 goroutine 被创建时,它会被放入 P 的本地队列中等待执行。如果 P 的本地队列为空,它会从全局队列中获取 goroutine。如果所有的 P 都很忙,并且全局队列也为空,Go 运行时会创建新的 M 来执行 goroutine。
(三)Go 怎么调优
Go 语言的调优可以从多个方面进行。
- 合理设置 goroutine 的数量:避免创建过多的 goroutine,以免造成系统资源的浪费和调度开销。可以根据实际业务需求和系统资源情况来确定合适的 goroutine 数量。
- 优化内存使用:避免不必要的内存分配,例如重复创建和销毁大量的临时对象。可以使用对象池等技术来复用对象,减少内存分配的次数。
- 调整垃圾回收参数:可以通过设置环境变量 GODEBUG=gctrace=1 来观察垃圾回收的行为,并根据实际情况调整垃圾回收的参数,如 GOGC (垃圾回收触发的堆大小增长比例)等。
- 优化代码结构:避免复杂的函数调用链和循环嵌套,以提高代码的执行效率。
(四)Gc 算法中怎么实现的可达性分析
在 Go 的垃圾回收算法中,可达性分析是通过标记阶段实现的。
- 从根对象(如全局变量、栈上的变量等)开始遍历,标记所有可达的对象。
- 使用三色标记法,将对象分为白色(未被标记)、灰色(正在被标记)和黑色(已标记)三种状态。
- 首先将所有对象初始化为白色,然后从根对象开始,将其标记为灰色并放入一个队列中。接着从队列中取出灰色对象,遍历其引用的对象,将这些对象标记为灰色并放入队列中,同时将当前对象标记为黑色。重复这个过程,直到队列为空。此时,所有白色对象都是不可达的,可以被回收。
(五)三色标记出来之前是怎么去做的
在三色标记法出现之前,通常使用的是标记-清除算法。
- 首先暂停程序的执行(Stop The World),然后从根对象开始遍历,标记所有可达的对象。
- 完成标记后,扫描整个堆空间,回收所有未被标记的对象。
- 最后恢复程序的执行。
这种方式的缺点是在标记和清除阶段需要暂停程序的执行,会导致较长的暂停时间,影响程序的响应性。
(六)三色标记和之前的方式有什么区别
- 三色标记法不需要暂停整个程序的执行,可以与程序的执行并发进行。在标记过程中,对象的状态可以动态地从白色变为灰色再变为黑色,而不会影响程序的正常运行。
- 三色标记法可以更高效地标记可达对象,减少了标记阶段的时间开销。
- 三色标记法可以更好地处理循环引用的情况,避免了错误地回收可达对象。
(七)微服务的理解
微服务是一种架构风格,将一个大型的应用程序拆分为多个小型的、独立的服务。每个服务都可以独立部署、扩展和维护,并且通过轻量级的通信机制(如 HTTP、gRPC)进行交互。
- 优点:提高了开发效率,每个服务可以由不同的团队独立开发;增强了可扩展性,可以根据每个服务的需求进行独立扩展;提高了可靠性,一个服务的故障不会影响其他服务的正常运行。
- 挑战:服务之间的通信复杂性增加,需要处理服务发现、负载均衡、故障转移等问题;分布式事务的处理变得更加困难;需要更多的运维工作,如监控、日志管理等。
(八)怎么保证微服务高可用
- 负载均衡:使用负载均衡器将请求分发到多个实例上,避免单个实例的过载。
- 服务发现:使用服务发现机制,如 Consul、Etcd 等,让服务能够自动发现其他服务的位置。
- 容错机制:使用断路器(Circuit Breaker)模式,当一个服务出现故障时,能够快速失败并返回错误响应,避免故障扩散。同时,可以使用重试机制,在一定条件下自动重试失败的请求。
- 监控和告警:建立完善的监控系统,实时监测服务的运行状态,当出现异常情况时及时发出告警通知开发人员进行处理。
(九)具体怎么拆分微服务
- 根据业务功能进行拆分:将一个大型的应用程序按照业务功能划分为多个独立的服务,每个服务负责一个特定的业务领域。
- 考虑数据独立性:尽量让每个服务拥有自己独立的数据存储,避免数据的耦合。
- 考虑服务的可扩展性:对于可能会快速增长的业务功能,可以单独拆分为一个服务,以便更好地进行扩展。
- 考虑服务的通信成本:尽量减少服务之间的通信次数和数据量,避免过高的通信成本。
(十)MySQL 几个隔离级别
MySQL 有四个隔离级别:
- 读未提交(Read uncommitted):一个事务可以读取另一个未提交事务修改的数据,会导致脏读、不可重复读和幻读问题。
- 读已提交(Read committed):一个事务只能读取另一个已提交事务修改的数据,可以避免脏读,但可能会出现不可重复读和幻读问题。
- 可重复读(Repeatable read):在一个事务中多次读取同一数据时,结果是一致的,可以避免脏读和不可重复读问题,但可能会出现幻读问题。这是 MySQL 的默认隔离级别。
- 串行化(Serializable):最高的隔离级别,通过对事务进行串行化执行,避免了脏读、不可重复读和幻读问题,但会导致性能下降。
(十一)MySQL 调优,除了索引以外怎么调优,MySQL 的锁的应用
- 优化查询语句:避免使用复杂的查询语句和函数,尽量减少数据的返回量。可以使用 EXPLAIN 命令分析查询语句的执行计划,找出性能瓶颈并进行优化。
- 调整数据库参数:如 innodb_buffer_pool_size (缓冲池大小)、 max_connections (最大连接数)等,可以根据系统的实际情况进行调整。
- 分表和分区:对于大数据量的表,可以进行分表和分区,提高查询性能。
- 合理使用存储引擎:根据实际需求选择合适的存储引擎,如 InnoDB 支持事务和行级锁,MyISAM 适合读多写少的场景。
MySQL 的锁的应用:
- 共享锁(Shared Lock):也称为读锁,多个事务可以同时对同一数据行加共享锁,用于读取数据。
- 排他锁(Exclusive Lock):也称为写锁,只有一个事务可以对同一数据行加排他锁,用于写入数据。
- 意向锁(Intention Lock):用于表示事务在表级别或行级别上的锁意向,方便其他事务了解当前事务的锁情况。
(十二)Redis 的缓存应用适合什么场景,缓存击穿,穿透,雪崩几个八股
- Redis 的缓存应用场景:
- 频繁访问的数据:对于经常被访问的数据,可以将其缓存起来,减少数据库的访问压力。
- 热点数据:对于一段时间内的热点数据,可以缓存起来,提高响应速度。
- 计算结果缓存:对于一些复杂的计算结果,可以缓存起来,避免重复计算。
- 缓存击穿:指一个非常热门的数据在缓存过期的一瞬间,同时有大量的请求过来,这些请求发现缓存过期后都会去查询数据库,从而对数据库造成巨大的压力。解决方法可以是设置热点数据永不过期,或者在查询数据库时使用互斥锁,只让一个请求去查询数据库并更新缓存。
- 缓存穿透:指查询一个不存在的数据,由于缓存中不存在该数据,每次都会去查询数据库,从而对数据库造成压力。解决方法可以是对不存在的数据也进行缓存,设置一个较短的过期时间;或者在查询数据库前进行参数校验,过滤掉非法的参数。
- 缓存雪崩:指大量的缓存数据在同一时间过期,导致大量的请求直接打到数据库,从而对数据库造成巨大的压力。解决方法可以是设置不同的过期时间,避免大量数据同时过期;或者使用分布式锁,只让一个请求去更新缓存,其他请求等待缓存更新完成后再从缓存中读取数据。
通过这次面试,我对 Go 语言的理解更加深入,也认识到了自己的不足之处。在未来的学习和工作中,我将继续努力,不断提升自己的技术水平。
7605

被折叠的 条评论
为什么被折叠?



