目录
最近参加了字节跳动的 Golang 岗位社招面试,整个过程持续了 70 分钟,以下是面试的详细内容总结。
一、项目介绍
面试官对我简历上的项目进行了全面的询问,包括项目的背景、目标、技术架构以及我在项目中承担的具体角色和贡献。由于有些项目时间比较久远,一些细节确实需要仔细回忆。在回答项目相关问题时,要清晰地阐述项目的重点和难点,以及自己是如何解决这些问题的。
二、算法题
- 最长回文子串
- 思路:可以使用动态规划的方法来解决这个问题。定义一个二维数组
dp,其中dp[i][j]表示字符串从下标i到下标j的子串是否是回文串。状态转移方程为:如果s[i]==s[j]且当j-i<=1或者dp[i + 1][j - 1]为真时,dp[i][j]为真。 - 代码实现:
- 思路:可以使用动态规划的方法来解决这个问题。定义一个二维数组
package main
func longestPalindrome(s string) string {
n := len(s)
if n < 2 {
return s
}
start, maxLen := 0, 1
dp := make([][]bool, n)
for i := range dp {
dp[i] = make([]bool, n)
dp[i][i] = true
}
for j := 1; j < n; j++ {
for i := 0; i < j; i++ {
if s[i] == s[j] {
if j-i <= 2 {
dp[i][j] = true
} else {
dp[i][j] = dp[i+1][j-1]
}
}
if dp[i][j] && j-i+1 > maxLen {
start = i
maxLen = j - i + 1
}
}
}
return s[start : start+maxLen]
}
- LRU(Least Recently Used)缓存
- 思路:可以使用哈希表和双向链表来实现 LRU 缓存。哈希表用于快速查找节点,双向链表用于维护节点的使用顺序。当访问一个节点时,将其移动到链表头部;当缓存满时,删除链表尾部的节点。
- 代码实现:
package main
type Node struct {
key, value int
prev, next *Node
}
type LRUCache struct {
capacity int
cache map[int]*Node
head, tail *Node
}
func Constructor(capacity int) LRUCache {
cache := LRUCache{
capacity: capacity,
cache: make(map[int]*Node),
head: &Node{},
tail: &Node{},
}
cache.head.next = cache.tail
cache.tail.prev = cache.head
return cache
}
func (this *LRUCache) Get(key int) int {
if node, ok := this.cache[key]; ok {
this.removeNode(node)
this.addToHead(node)
return node.value
}
return -1
}
func (this *LRUCache) Put(key int, value int) {
if node, ok := this.cache[key]; ok {
node.value = value
this.removeNode(node)
this.addToHead(node)
} else {
newNode := &Node{key: key, value: value}
this.cache[key] = newNode
this.addToHead(newNode)
if len(this.cache) > this.capacity {
removed := this.removeTail()
delete(this.cache, removed.key)
}
}
}
func (this *LRUCache) removeNode(node *Node) {
node.prev.next = node.next
node.next.prev = node.prev
}
func (this *LRUCache) addToHead(node *Node) {
node.next = this.head.next
node.prev = this.head
this.head.next.prev = node
this.head.next = node
}
func (this *LRUCache) removeTail() *Node {
removed := this.tail.prev
this.removeNode(removed)
return removed
}
- LFU(Least Frequently Used)缓存
- 思路:LFU 缓存需要维护每个键的访问频率。可以使用哈希表和多个双向链表来实现。每个链表代表一个不同的访问频率,当一个键被访问时,将其从当前频率的链表中移除,并插入到更高频率的链表头部。当缓存满时,删除最低频率链表的尾部节点。
- 虽然在面试中没有完整写出代码,但大致思路如下:
- 定义一个结构体来表示节点,包含键、值、访问频率和指向前一个节点和后一个节点的指针。
- 定义一个结构体来表示 LFU 缓存,包含容量、哈希表用于存储键和节点的映射、多个双向链表用于存储不同频率的节点。
- 实现
Get方法,根据键从哈希表中查找节点,如果找到,则增加节点的访问频率,并将其移动到更高频率的链表中。 - 实现
Put方法,根据键判断节点是否存在,如果存在,则更新值并增加访问频率;如果不存在,则创建新节点,插入到最低频率的链表中。如果缓存已满,则删除最低频率链表的尾部节点。
三、Redis 相关问题
-
Redis 大 key 和热 key 问题
- 大 key 问题:
- 定义:Redis 中的大 key 是指存储的数据量较大的键值对,可能会占用大量的内存空间,影响 Redis 的性能和稳定性。
- 解决方法:
- 避免存储过大的数据:尽量将数据拆分成多个小的键值对进行存储。
- 定期清理无用数据:对于不再使用的大 key,可以及时删除。
- 使用 Redis 的数据结构优化:例如,对于存储大量元素的集合,可以考虑使用有序集合(Sorted Set)来替代列表(List),以提高查询性能。
- 热 key 问题:
- 定义:热 key 是指被频繁访问的键,可能会导致 Redis 服务器的负载不均衡,影响整体性能。
- 解决方法:
- 缓存预热:在系统启动时,将热 key 预先加载到缓存中,减少首次访问时的延迟。
- 本地缓存:在应用服务器本地使用缓存,减少对 Redis 的访问压力。
- 读写分离:对于读操作频繁的热 key,可以使用 Redis 的主从复制功能,将读操作分散到多个从节点上。
- 数据分片:将热 key 的数据分散到多个 Redis 实例中,通过一致性哈希等算法进行路由。
- 大 key 问题:
-
Redis 和数据库缓存一致性怎么解决
- 先更新数据库,再删除缓存:在更新数据库后,立即删除缓存中的对应数据。这样,下次读取数据时,会从数据库中重新加载最新的数据到缓存中。但是这种方法可能会出现缓存删除失败的情况,可以通过重试机制或者使用消息队列来保证缓存删除的可靠性。
- 先删除缓存,再更新数据库:这种方法可以避免在更新数据库的过程中,其他线程读取到旧数据并放入缓存的问题。但是如果在删除缓存后,数据库更新失败,可能会导致数据不一致。可以通过事务或者重试机制来解决这个问题。
- 使用缓存更新机制:可以在数据库更新时,同时更新缓存。但是这种方法需要保证缓存更新的原子性和一致性,可以使用分布式锁或者事务来实现。
通过这次面试,我对自己的知识和技能有了更清晰的认识,也明确了自己需要进一步学习和提高的方向。希望能够有机会进入二面,继续展示自己的能力。
745

被折叠的 条评论
为什么被折叠?



