目录
在电商和 O2O 行业迅速发展的同时,诈骗问题也日益凸显,给用户和企业带来了诸多困扰。本文将探讨电商和 O2O 行业诈骗的相关内容,包括诈骗类型、防范措施以及风控平台等方面,并给出 Java 相关代码示例。
一、电商和 O2O 行业诈骗的类型
(一)不知晓用户详细信息
类似于快递费的诈骗,寄送一个无效电话卡等,骗取到付快递费。
(二)知晓用户详细信息
- 针对订单取消、退货
- 如航空故障、问题商品等情况,诈骗者可能利用这些信息进行欺诈。
- 银行卡、信用卡类欺诈
- 获取用户短信,盗用用户相关钱财。例如,之前曝出拿到用户一个绑定手机验证码,可以将用户所有卡余额取完。
- 在团购类网站的特殊诈骗
- 以花呗套现为名的诈骗较为典型。在 QQ 群发布套现信息,在团购网站下一个订单,让受害人用花呗支付,支付完后不进行兑付。下的订单一般是容易变现的如电话卡、超市储值卡之类,或者是虚假商户团购。
- 基于订单和物流信息的诈骗
- 这些信息可以通过黑市去购买,用来套取用户的银行卡信息,实施诈骗。
二、诈骗者的目的和利益点
最终获利的主要基于两点:
- 获取用户更多信息实行另外的诈骗。
- 直接通过该点进行获利。不同诈骗团伙获利方式不一样,有的基于隐私数据、有的基于账户财产、有的基于信购能力等。
三、防范电商和 O2O 行业诈骗的措施
(一)防范刷单情况
- 从 c 端 b 端两侧考虑
- c 端:对用户的注册、登录、下单、支付等事件进行风控扫描和异常拦截。例如,以下是一个简单的 Java 代码示例,用于模拟对用户登录事件的风控检查:
public class UserLoginCheck {
public static boolean checkLogin(String username, String password, String ipAddress) {
// 假设这里有一些简单的规则,比如检查用户名和密码是否符合格式要求
if (!username.matches("[a-zA-Z0-9]+") ||!password.matches("[a-zA-Z0-9]+")) {
return false;
}
// 可以根据IP地址进行一些风险判断,这里只是简单示例
if (isHighRiskIP(ipAddress)) {
return false;
}
return true;
}
private static boolean isHighRiskIP(String ipAddress) {
// 这里可以实现更复杂的IP风险判断逻辑,比如查询风险IP库
return false;
}
}
- b 端:识别作弊聚集的商家、商品,识别虚假商户。大额的优惠建议仅限 app,可以利用设备信息。
- 针对单账户和行为点的恶意控制
- 包括针对单账户的恶意识别(包括行为和维度数据),针对行为点的恶意控制(包括业务控制和恶意防护过滤),以及针对事后的数据分析以及业务反馈进行离线拦截,同时数据反推到前面的步骤进行事件闭环。还可以结合外部数据,包括一些大公司的服务和行业黑数据进行综合应用。
- 多维度判断恶意用户
- 从注册、登录、下单过程结合 ip、手机号、用户行为等多维度判断是否为恶意用户,通过安全大数据系统进行关联分析判断用户是否在刷单。针对刷单用户会有下单拦截、取消,甚至冻结账号等措施。例如,以下 Java 代码展示了如何根据多个维度信息判断用户是否为恶意用户:
import java.util.HashMap;
import java.util.Map;
public class UserFraudDetection {
public static boolean isFraudUser(String ip, String phoneNumber, String userBehavior) {
Map<String, String> userInfo = new HashMap<>();
userInfo.put("ip", ip);
userInfo.put("phoneNumber", phoneNumber);
userInfo.put("userBehavior", userBehavior);
// 这里可以根据具体的业务规则和算法来判断用户是否为恶意用户
// 比如检查IP是否在黑名单中,手机号是否异常,用户行为是否符合刷单模式等
if (isBlacklistedIP(ip) || isAnomalousPhoneNumber(phoneNumber) || isSuspiciousBehavior(userBehavior)) {
return true;
}
return false;
}
private static boolean isBlacklistedIP(String ip) {
// 这里可以实现查询IP黑名单的逻辑
return false;
}
private static boolean isAnomalousPhoneNumber(String phoneNumber) {
// 这里可以实现判断手机号是否异常的逻辑
return false;
}
private static boolean isSuspiciousBehavior(String userBehavior) {
// 这里可以实现判断用户行为是否可疑的逻辑
return false;
}
}
(二)监测刷单异常
- 下单维度数据聚合。
- 用户手机号、地址信息异常匹配(比如某些高危区域)。
- 分类订单异常监控,比如某个价格订单或者某类商品订单突增。
- 维度数据的层级关联,如一个人订了一个外卖,可能这个人也是一个送货员,进行多层级数据关联,可以看到更广的信息。
(三)其他方面
- 用户自身:进行相关诈骗信息的提示和预警。
- 网站方面:从各个环节排查信息泄漏点,进行用户信息各层保护,包括物流、第三方系统等。例如,在 Java 中,可以使用加密算法对用户信息进行保护:
import javax.crypto.Cipher;
import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;
import java.nio.charset.StandardCharsets;
import java.util.Base64;
public class UserInfoProtection {
public static String encryptUserInfo(String userInfo) throws Exception {
KeyGenerator keyGenerator = KeyGenerator.getInstance("AES");
SecretKey secretKey = keyGenerator.generateKey();
Cipher cipher = Cipher.getInstance("AES");
cipher.init(Cipher.ENCRYPT_MODE, secretKey);
byte[] encryptedBytes = cipher.doFinal(userInfo.getBytes(StandardCharsets.UTF-8));
return Base64.getEncoder().encodeToString(encryptedBytes);
}
public static String decryptUserInfo(String encryptedUserInfo) throws Exception {
KeyGenerator keyGenerator = KeyGenerator.getInstance("AES");
SecretKey secretKey = keyGenerator.generateKey();
Cipher cipher = Cipher.getInstance("AES");
cipher.init(Cipher.DECRYPT_MODE, secretKey);
byte[] decryptedBytes = cipher.doFinal(Base64.getDecoder().decode(encryptedUserInfo));
return new String(decryptedBytes, StandardCharsets.UTF-8);
}
}
- 各个重要业务模块方面:包括卡类支付、余额、信贷,都需要严格进行风控和用户信息校验,进行相关风险防护。
- 从业人员方面:安全人员需要不断了解新的攻击手法,同时也要深入到敌后,提前部署相关防御。
四、乙方风控平台的优势及相关应用
- 优势
- 乙方在某些领域的数据会更加的专业,比如代理 ip 的精准检测等。可以通过他们的接口进行查询,把结果作为用户信用的评判因素之一,加入到风控系统进行评分。
- 共享黑数据的调用
- 乙方的优势在于对接了多个平台,平台之间的黑名单数据可以共享。但是乙方提供的黑名单也不能直接使用,准确率较难保证,而且不稳定,只能用于聚合类的策略。共享黑数据是建立生态圈比较好的方式,但要互信互利,同时自身业务应用也需要对数据进行一定的把控,数据是否能起到很大的作用或者数据质量的保证需要进行大量的实践。
五、电商和 O2O 行业风控平台的搭建
(一)参考架构
风控系统主要分几方面:
- 规则引擎:用于定制风控的规则。
- 底层数据:可以进行聚类拟合等模型算法。
- api 接口服务:当前输出大多平台都是以 api 服务模式,当然也有进行直接流量层的防护。风控是一个复杂的系统工程,会用到各类大数据技术,高并发,还有模型算法等,来支撑恶意行为的防护。
(二)具体组成
- 规则服务:主要用于定制风控的规则。
- 处罚中心:处理触发的规则事件,这里分为人工和自动处理。
- 数据中心:挖掘用户数据,构建模型,优化规则的平台。当然,风控识别离不开和业界其他团队合作。
希望通过对电商和 O2O 行业诈骗相关内容的介绍,能让企业和开发人员更加重视行业安全问题,采取有效的防范措施,减少诈骗行为的发生。
请注意,上述代码示例仅用于演示相关概念,实际应用中应根据具体业务需求和安全要求进行更完善的设计和实现。
3万+

被折叠的 条评论
为什么被折叠?



