40.利用欧拉法求解微分方程组(matlab程序)

1.简述

      

求解微分方程的时候,如果不能将求出结果的表达式,则可以对利用数值积分对微分方程求解,获取数值解。欧拉方法是最简单的一种数值解法。前面介绍过MATLAB实例讲解欧拉法求解微分方程,今天实例讲解欧拉法求解一阶微分方程组。


本文理论部分来自知乎作者云端之下的文章“常微分方程——数值解——欧拉方法”

微分方程的求解方法有解析解法和数值解法,解析法是求出因变量关于时间 �的具体函数式,表达 ;数值法是解出因变量  关于时间 �的离散序列,通常表达离散数据对。绝大多数的非线性常微分方程,不存在或难以求出解析解,大多数情况下只能求取微分方程的数值解。

2.代码

%%  学习目标:欧拉法求解微分方程组
clear;clc
c=2/3;  %设置c的值
x(1)=0.1;  %设置x初值为0.1
y(1)=0.3;  %设置y初值为0.3
h=0.05;    %设置步长为0.05

%for循环:根据Euler法,求解微分方程组
for i=1:1000
    x(i+1)=x(i)+h*(x(i)*(c-x(i)/y(i)));
    y(i+1)=y(i)+h*(y(i)*(1-y(i))-x(i)

欧拉法是一种基本的数值解微分方程的方法,它可以用于求解一阶或高阶常微分方程。对于微分方程欧拉法的步骤如下: 1. 给出微分方程的初始条件。 2. 将微分方程转化为递推式。 3. 选择适当的步长 h ,根据递推式从初始条件开始逐步计算出数值解。 下面以一个二阶线性微分方程为例,来详细说明欧拉法求解步骤。 设微分方程为: $$ \begin{cases} y_1'=y_2\\ y_2'=-y_1 \end{cases} $$ 初始条件为 $y_1(0)=1, y_2(0)=0$。 将微分方程转化为递推式,有: $$ \begin{cases} y_{1,n+1}=y_{1,n}+hy_{2,n}\\ y_{2,n+1}=y_{2,n}-hy_{1,n} \end{cases} $$ 其中,$h$ 为步长。 选择步长 $h=0.1$,从初始条件 $y_1(0)=1, y_2(0)=0$ 开始逐步计算出数值解。 $$ \begin{aligned} y_{1,1}&=y_{1,0}+hy_{2,0}=1+0\times0.1=1\\ y_{2,1}&=y_{2,0}-hy_{1,0}=0-1\times0.1=-0.1\\ y_{1,2}&=y_{1,1}+hy_{2,1}=1-0.1\times0.1=0.99\\ y_{2,2}&=y_{2,1}-hy_{1,1}=-0.1-1\times0.1=-0.2\\ y_{1,3}&=y_{1,2}+hy_{2,2}=0.99-0.2\times0.1=0.98\\ y_{2,3}&=y_{2,2}-hy_{1,2}=-0.2-0.99\times0.1=-0.299\\ \cdots\\ \end{aligned} $$ 依此类推,计算出 $y_1$ 和 $y_2$ 的数值解。 需要注意的是,欧拉法是一种一阶近似方法,其精度不够高,误差会随着步长的增加而增加。因此,在实际应用中,需要根据具体问题选择合适的步长,以保证数值解的精度。此外,还有其他更精确的数值解微分方程的方法,如龙格-库塔法、变步长欧拉法等,可以根据需要选择合适的方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

素馨堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值