【风电功率预测】【多变量输入单步预测】基于CNN-BiGRU-Attention的风电功率预测研究(Matlab代码实现)

         💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、算法概述

1. CNN(卷积神经网络)

2. BiGRU(双向门控循环单元)

3. Attention(注意力机制)

三、模型构建与预测流程

四、研究优势与应用前景

1. 研究优势

2. 应用前景

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于CNN-BiGRU-Attention的风电功率预测研究是一个结合了深度学习技术的复杂课题,旨在提高风电功率预测的准确性和稳定性。以下是对该研究的详细探讨:

一、研究背景与意义

风能作为一种清洁、可再生的能源,在全球能源结构转型中扮演着越来越重要的角色。然而,由于风速的随机性和不稳定性,风电功率的预测一直是一个具有挑战性的问题。精准的风电功率预测可以有效提高风电场的运行效率、降低发电成本,并提高电力系统的稳定性。因此,开发精确的风电功率预测模型具有重要意义。

二、算法概述

1. CNN(卷积神经网络)
  • 定义:CNN是一种深度学习模型,擅长提取图像和时间序列数据中的局部特征信息。
  • 在风电功率预测中的应用:用于提取风电功率数据的空间特征,如风速变化趋势、季节性变化等。通过滑动窗口和池化层,CNN能够捕捉数据中的局部特征,并减少数据维度。
2. BiGRU(双向门控循环单元)
  • 定义:BiGRU是RNN(循环神经网络)的一种变体,结合了前向和后向两个方向的GRU(门控循环单元),能够更有效地捕捉数据中的时间序列特征。
  • 在风电功率预测中的应用:能够捕捉风速和功率随时间的变化规律,同时考虑过去和未来的信息,提高预测精度。
3. Attention(注意力机制)
  • 定义:注意力机制允许模型在处理序列数据时,集中关注输入序列中最相关的部分。
  • 在风电功率预测中的应用:可以增强模型对关键时间步的敏感度,提高预测精度。在风电功率预测中,注意力机制可以帮助模型识别对预测结果影响较大的风速特征,并对其进行加权。

三、模型构建与预测流程

基于CNN-BiGRU-Attention的风电功率预测模型构建主要包括以下几个步骤:

  1. 数据预处理:对风电功率历史数据进行清洗、归一化等处理,以便于神经网络学习。
  2. 模型构建:结合CNN、BiGRU和Attention机制构建风电功率预测模型。CNN用于提取数据的空间特征,BiGRU用于捕捉时间序列特征,Attention机制用于增强对关键时间步的敏感度。
  3. 模型训练:使用训练集数据对模型进行训练,通过反向传播算法更新网络参数,目标是最小化预测误差(如均方误差)。
  4. 结果评估:使用测试集数据对训练好的模型进行评估,计算预测误差,如平均绝对误差(MAE)、均方根误差(RMSE)等,以评估模型的预测性能。

四、研究优势与应用前景

1. 研究优势
  • 高精度:CNN-BiGRU-Attention模型能够同时捕捉风电功率数据中的空间和时间特征,以及关键时间步的信息,从而实现高精度的预测。
  • 适应性强:该模型能够处理非线性、高维的时序数据,适用于复杂的风电预测场景。
  • 稳定性好:通过引入BiGRU的双向结构和门控机制,模型在处理时序数据时具有更好的稳定性。
2. 应用前景
  • 风电场运营优化:准确的风电功率预测有助于风电场优化发电计划,提高发电效率。
  • 电力系统调度:为电力系统调度提供可靠的风电功率预测信息,有助于电力系统的稳定运行。
  • 能源管理:在智能电网和能源管理领域,风电功率预测技术具有重要的应用价值。

综上所述,基于CNN-BiGRU-Attention的风电功率预测研究通过结合深度学习的非线性学习能力和优化算法的全局搜索能力,有效提高了风电功率预测的准确性和稳定性。这一研究成果对于推动风电产业的发展具有重要意义,并有望在未来得到更广泛的应用。

📚2 运行结果

部分代码:

% 此函数可以实现多变量多步输入,和多变量单步输入
% 多变量多步输入时,将n_out设置成大于1的多步预测
% 多变量单步输入时,将n_out设置为1,表示预测未来一步。
% # 关于此函数怎么用,下面详细举例介绍:
% # 构造数据,这个函数可以实现单输入单输出,单输入多输出,多输入单输出,和多输入多输出。
% # 举个例子:
% # 假如原始数据为,其中务必使得数据前n-1列都为特征,最后一列为输出
% # [0.74    0.8    0.23 750.75
% # 0.74 0.87 0.15 716.94
% # 0.74 0.87 0.15 712.77
% # 0.74 0.8 0.15 684.86
% # 0.74 0.8 0.15 728.79
% # 0.72 0.87 0.08 742.81
% # 0.71 0.99 0.16 751.3]

% #(多输入多输出为例),假如n_in = 2,n_out=2,scroll_window=1
% # 输入前2行数据的特征,预测未来2个时刻的数据,滑动步长为1。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75  0.74    0.87 0.15 716.94 712.77 684.86
% # 0.74 0.87 0.15 716.94 0.74 0.87    0.15 712.77  684.86 728.79
% # 0.74 0.87 0.15 712.77 0.74 0.8 0.15 684.86 728.79 742.81】

% # 假如n_in = 2,n_out=1,scroll_window=2
% # 输入前2行数据的特征,预测未来1个时刻的数据,滑动步长为2。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75  0.74    0.87 0.15 716.94 712.77
% # 0.74 0.87    0.15 712.77  0.74 0.8 0.15 684.86 728.79
% # 0.74 0.8 0.15 728.79 0.72    0.87 0.08 742.81 751.3】


function  res = data_collation(values, n_in, n_out, or_dim, scroll_window, num_samples)
    for i = 1:num_samples
        h1 = values(1+scroll_window*(i-1): scroll_window*(i-1)+n_in,1:or_dim);
        res{i,1}= h1;
        h2 = values(scroll_window*(i-1)+n_in+1 : scroll_window*(i-1)+n_in+n_out,end);
        res{i,2} = h2;
      
    end
 end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张新生,贺凯璐.基于SSA-CNN的长距离矿浆管道临界流速预测[J].安全与环境学报, 2022.

[2]王华君,惠晶.基于CNN和LSSVM的人脸图像年龄估计方法[J].信息与电脑, 2017(7):3.DOI:10.3969/j.issn.1003-9767.2017.07.034.

[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.

[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011.DOI:CNKI:SUN:DLXT.0.2011-12-005.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

  • 25
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
MATLAB中使用LSTM模型进行多变量单步预测的步骤如下: 1. 数据准备:将多个变量的时间序列数据整理成适合LSTM模型输入的格式。通常情况下,数据应该是一个二维数组,其中行表示时间步,列表示变量。确保数据集包含足够数量的样本以及适当的标签。 2. 数据预处理:对数据进行标准化或归一化处理,以便在输入到LSTM之前将其缩放到一个合适的范围内。这可以通过MATLAB的标准函数或自定义函数进行实现。 3. 构建LSTM模型:在MATLAB中,可以使用深度学习工具箱来构建LSTM模型。指定模型的架构,例如输入和输出的维度,隐藏层的大小,激活函数等,并使用适当的优化算法进行训练。 4. 模型训练:使用准备好的数据集对构建好的LSTM模型进行训练。通过迭代优化算法来调整模型的权重和偏差,使其能够在训练数据上学习到相关模式和趋势。 5. 模型预测:使用模型对测试数据进行预测。将测试数据输入到训练好的LSTM模型中,通过模型的前向传播计算出预测值。 6. 结果评估:使用合适的评估指标来评估模型的预测性能,例如均方根误差(RMSE)或平均绝对百分比误差(MAPE)。根据评估结果对模型进行调整和改进。 7. 可视化结果:使用MATLAB的绘图工具,将训练和预测结果可视化展示,以便更直观地观察模型在不同变量上的预测效果。 这是一个基本的步骤框架,在实际应用中可能还需要进行更多细节的调整和优化,以使模型更加准确和可靠。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值