💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
自适应动态规划(Adaptive Dynamic Programming, ADP)算法作为一种先进的问题求解方法,在多业务领域展现出了卓越的适用性。在电力系统领域,针对新能源发电波动所引发的优化调度难题,ADP 算法能够提供有效的解决方案;在化工行业,对于非线性系统的优化控制问题,该算法同样表现出色。与传统的算法相比,ADP 算法具有明显的优势。它通过在线学习和自适应机制,能够妥善处理模型存在的不确定性(如参数时变特性、未建模动态等)以及模型难以精确建立(如复杂非线性系统)的情况,有效避免了求解过程中可能出现的维数灾难问题。本代码作为 ADP 算法在系统最优控制中的典型应用实例,充分展示了该算法的强大功能。
本程序是对 Automatica 期刊相关研究成果的复现,采用了自适应动态规划技术。在求解过程中,程序利用系统状态和输入的在线信息进行迭代计算,无需预先获取系统矩阵的先验知识。通过在固定的时间间隔内,反复利用系统状态和输入信息进行迭代,程序能够逐步逼近最优控制解。该程序采用 MATLAB 语言编写,并附有详尽的中文注释,为相关领域的学习和研究提供了便利。
一、问题定义与数学模型
1. 系统描述
二、自适应最优控制框架设计
1. 总体架构
2. 关键技术模块
(1) 参数辨识模块
(2) 自适应动态规划模块
(3) 协同工作机制
- 数据驱动闭环:
- 采集实时状态 x(t)x(t) 与控制 u(t)u(t)。
- 更新参数估计 A^,B^A^,B^。
- 用估计模型求解HJB,更新控制律。
- 应用新控制律至系统,重复步骤1。
三、数值求解与算法实现
1. 连续时间问题离散化
- 直接配点法(高斯伪谱法,):
- 在Legendre-Gauss点离散状态与控制变量。
- 将连续最优控制问题转化为NLP问题:
- 求解器:IPOPT或SNOPT。
2. 在线算法伪代码
def adaptive_optimal_control():
while t < T_max:
# 1. 采集数据
x_curr = get_state()
u_curr = get_control()
# 2. 更新参数估计 ([[79]])
e = x_curr - x_hat
A_hat += Gamma_A * e * x_curr.T * dt
B_hat += Gamma_B * e * u_curr.T * dt
# 3. 求解HJB ([[146]])
W_new = solve_HJB(A_hat, B_hat) # 值迭代或最小二乘
# 4. 更新控制律
u_new = -0.5 * inv(R) * B_hat.T * grad_phi(x_curr).T * W_new
apply_control(u_new)
四、实验验证方案设计(SCI标准)
1. 对比基准
方法类型 | 代表算法 | 对比目的 |
---|---|---|
经典控制 | LQR (已知模型) | 验证最优性能上限 |
无模型强化学习 | DDPG | 展示模型未知时的优势 |
主流自适应控制 | MRAC () | 突出动态规划优化能力 |
2. 评估指标
3. 仿真场景设计
- 扰动测试:
- 参数跳变:t=5s 时 A22 从 −1变为 −3。
- 外部干扰:t=10s 加入高斯白噪声 d(t)∼N(0,0.1)。
- 统计显著性:蒙特卡洛仿真100次,报告均值与95%置信区间。
五、理论支撑与创新点
1. 关键理论依据
- 稳定性保证:
- 参数辨识器基于Lyapunov稳定性设计。
- ADP收敛性由贝尔曼最优性原理保证。
- 最优性证明:
- 当参数估计收敛时,控制律渐近逼近LQR最优解。
2. 创新性设计
- 双时间尺度分离:快变参数辨识 + 慢变ADP更新,避免耦合发散。
- 计算效率优化:HJB求解中采用稀疏神经网络,减少参数规模。
六、复现注意事项
- 代码实现:
- 使用Python
scipy.integrate.solve_ivp
解微分方程。 - ADP部分采用PyTorch实现神经网络。
- 使用Python
- 参数初始化:
- 实验可复现性:
- 公开代码与数据集。
- 记录所有超参数(Q, R, 神经网络结构等)。
本方案严格依据文献证据,融合参数辨识与动态规划,为系统动力学完全未知的连续时间线性系统提供理论严谨、工程可行的自适应最优控制框架。实验设计符合SCI标准,注重对比全面性与统计显著性。
📚2 运行结果
在迭代进程持续推进、迭代次数不断增多的情况下,代价矩阵与最优代价矩阵之间的范数误差会逐步趋近于 0 。这一现象表明,借助“评估 - 改进”这一循环机制,代价矩阵最终能够收敛至契合 Bellman 最优性原理的解。
在迭代过程持续推进、迭代次数逐步递增的过程中,增益控制矩阵的范数误差呈现出逐渐趋近于 0 的态势,这一结果充分满足了最优控制所设定的条件。
下图展示的是系统内 6 个状态变量随时间变化的响应曲线。从曲线中可以清晰观察到,这 6 个状态变量实现了同步收敛。这一现象有力地证明了自适应动态规划(ADP)方法具备处理强耦合非线性系统的能力,例如发动机系统中多参数之间复杂的交互作用场景。ADP 通过基于数据驱动的学习机制,能够达成对多变量的最优控制。
系统状态向量范数随时间演变的响应曲线呈现出优良的收敛特性。这表明所采用的控制算法具备高效抑制初始偏差的能力,例如在发动机启动阶段出现的状态波动情况,该算法能够迅速应对。由此可见,该控制算法拥有出色的动态响应性能。
曲线呈现出快速收敛的特征,这充分表明所采用的控制算法具备强大的动态调节能力,能够迅速对各类扰动进行抑制。
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取