方法三:双指针
思路与算法
我们也可以在不预处理出链表的长度,以及使用常数空间的前提下解决本题。
由于我们需要找到倒数第 nn 个节点,因此我们可以使用两个指针 first 和 second 同时对链表进行遍历,并且first 比second 超前 nn 个节点。当 \textit{first}first 遍历到链表的末尾时,second 就恰好处于倒数第 nn 个节点。
具体地,初始时 first 和 second 均指向头节点。我们首先使用 \textit{first}first 对链表进行遍历,遍历的次数为 nn。此时,first 和 second 之间间隔了 n-1n−1 个节点,即first 比 second 超前了 nn 个节点。
在这之后,我们同时使用 first 和 econd 对链表进行遍历。当 \textit{first}first 遍历到链表的末尾(即irst 为空指针)时,second 恰好指向倒数第 nn 个节点。
根据方法一和方法二,如果我们能够得到的是倒数第 nn 个节点的前驱节点而不是倒数第 nn 个节点的话,删除操作会更加方便。因此我们可以考虑在初始时将 second 指向哑节点,其余的操作步骤不变。这样一来,当遍历到链表的末尾时,second 的下一个节点就是我们需要删除的节点。
class Solution {
public:
ListNode* removeNthFromEnd(ListNode* head, int n) {
ListNode* dummy = new ListNode(0, head);
ListNode* first = head;
ListNode* second = dummy;
for (int i = 0; i < n; ++i) {
first = first->next;
}
while (first) {
first = first->next;
second = second->next;
}
second->next = second->next->next;
ListNode* ans = dummy->next;
delete dummy;
return ans;
}
};
本人观看官方视频后自己写的代码:
class Solution {
public:
ListNode* removeNthFromEnd(ListNode* head, int n) {
//快慢指针法
// 快慢指针一开始都指着头指针
//先让快指针前进n+1步
//然后让快慢指针一起前进,当快指针的下一个节点为NULL时,慢指针所对应节点下一个节点即为待删节点
int lenth=0;
ListNode* first = head;
ListNode* second = head;
ListNode* h1;
for (int i = 0; i < n; i++)first = first->next;
if (first == NULL)
{
ListNode* del = head;
h1 = head->next;
delete del;
}
else
{
while (first->next != NULL)
{
first = first->next;
second = second->next;
}
ListNode* del = second->next;
second->next = del->next;
delete del;
h1 = head;
}
return h1;
}
};
可以看到代码比官方的繁琐多,这是因为没有添加头结点