💌个人邮箱:[2707492172@qq.com]
💡座右铭:上善若水,水善利万物而不争。
🌐绿泡泡:PM简读馆(包含更多PM常用免费资料)
最近有项目刚结束,一直在准备交接的资料,所以KPI数据也就一直没有整理,今天上午把项目的所有issue都拉出来看了一下,发现不仅多,而且还杂乱,于是顿感头疼,想来想去,还是得要搞个脚本来把数据过滤和筛选一下。以下是处理后的源数据
1、绩效流程
2、先了解一下常用的issue的流程
所以总共有四个绩效考核标准
a、swpm转单-->测试关闭issue:整个软件处理周期
b、swpm转单-->RD首次回复:考核RD的响应周期
c、RD开始处理-->测试验证pass:RD的处理周期
d、Pa创建单子-->swpm开始处理:swpm的响应周期
output_file_path = os.path.join(output_dir, 'extracted_info_with_time_diff.xlsx')
with pd.ExcelWriter(output_file_path) as writer:
final_result_df.to_excel(writer, sheet_name='原时间差', index=False)
new_sheet_df.to_excel(writer, sheet_name='a_b时间差', index=False)
custom_sheet_df.to_excel(writer, sheet_name='多评论人时间差', index=False)
print(f"Excel 已保存到 {output_file_path}")
# 可视化部分(保持原有逻辑,仅展示原时间差)
valid_df = final_result_df.dropna(subset=['原时间差'])
valid_df['时间差(秒)'] = valid_df['原时间差'].dt.total_seconds()
plt.figure(figsize=(10, 6))
plt.bar(valid_df['Defect ID'], valid_df['时间差(秒)'], color='skyblue')
plt.xlabel('Defect ID')
plt.ylabel('时间差(秒)')
plt.title('每个缺陷的处理时间差可视化')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
chart_path = os.path.join(output_dir, 'time_difference_chart.png')
plt.savefig(chart_path)
print(f"图表已保存到 {chart_path}")
通过对表格数据的处理来获取有价值的信息
参考的可以绿泡泡:PM简读馆 发送 kpi 即可