前言
使用Flink处理数据时,可以基于Flink提供的批式处理(Batch Processing)和流式处理(Streaming Processing)API来实现,分别能够满足不同场景下应用数据的处理。这两种模式下,输入处理都被抽象为Source Operator,包含对应输入数据的处理逻辑;输出处理都被抽象为Sink Operator,包含了对应输出数据的处理逻辑。这里,我们只关注输出的Sink Operator实现。

Flink批式处理模式,运行Flink Batch Job时作用在有界的输入数据集上,所以Job运行的时间是有时限的,一旦Job运行完成,对应的整个数据处理应用就已经结束,比如,输入是一个数据文件,或者一个Hive SQL查询对应的结果集,等等。在批式处理模式下处理数据的输出时,主要需要实现一个自定义的OutputFormat,然后基于该OutputFormat来构建一个Sink,下面看下OutputFormat接口的定义,如下所示:

上面,configure()方法用来配置一个OutputFormat的一些输出参数;open()方法用来实现与外部存储系统建立连接;writeRecord()方法用来实现对Flink Batch Job处理后,将数据记录输出到外部存储系统。开发Batch Job时,通过调用DataSet的output()方法,参数值使用一个OutputFormat的具体实现即可。后面,我们会基于Elasticsearch来实现上面接口中的各个方法。

Flink流式处理模式,运行Flink Streaming Job时一般输入的数据集为流数据集,也就是说输入数据元素会持续不断地进入到Streaming Job的处理过程中,但你仍然可以使用一个HDFS数据文件作为Streaming Job的输入,即使这样,一个Flink Streaming Job启动运行后便会永远运行下去,除非有意外故障或有计划地操作使其终止。在流式处理模式下处理数据的输出时,我们需要是实现一个SinkFunction,它指定了如下将流数据处理后的结果,输出到指定的外部存储系统中,下面看下SinkFunction的接口定义,如下所示:

通过上面接口可以看到,需要实现一个invoke()方法,实现该方法来将一个输入的IN value输出到外部存储系统中。一般情况下,对一些主流的外部存储系统,Flink实现了一下内置(社区贡献)的SinkFunction,我们只需要配置一下就可以直接使用。而且,对于Streaming Job来说,实现的SinkFunction比较丰富一些,可以减少自己开发的工作量。开发Streaming Job时,通过调用DataStream的addSink()方法,参数是一个SinkFlink的具体实现。下面,我们分别基于批式处理模式和批式处理模式,分别使用或实现对应组件将Streaming Job和Batch Job的处理结果输出到Elasticsearch中:
如果你觉得自己学习效率低,缺乏正确的指导,可以加入资源丰富,学习氛围浓厚的技术圈一起学习交流吧!
[Java架构群]
群内有许多来自一线的技术大牛,也有在小厂或外包公司奋斗的码农,我们致力打造一个平等,高质量的JAVA交流圈子

本文介绍了如何使用Flink的DataSteam和DataSet API将数据批量和实时索引到Elasticsearch。针对批处理,由于Flink缺少官方的Elasticsearch Connector,文章展示了如何基于现有Streaming API的实现进行改造。而对于流处理,通过添加相关依赖,直接使用Flink的Elasticsearch Sink即可。文中还提供了详细的代码实现和配置参数说明。
最低0.47元/天 解锁文章
2309

被折叠的 条评论
为什么被折叠?



