XI-C-Li
码龄3年
关注
提问 私信
  • 博客:12,108
    12,108
    总访问量
  • 10
    原创
  • 310,019
    排名
  • 23
    粉丝
  • 0
    铁粉
  • 学习成就

个人简介:更新一些日常学习的知识

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:安徽省
  • 加入CSDN时间: 2021-05-24
博客简介:

m0_58581487的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    2
    当前总分
    156
    当月
    1
个人成就
  • 获得43次点赞
  • 内容获得9次评论
  • 获得65次收藏
创作历程
  • 1篇
    2024年
  • 9篇
    2023年
成就勋章
TA的专栏
  • 深度生成模型
    3篇
  • 概率图模型
    3篇
  • Ant Design Pro系列教程
    1篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

179人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

关于tf.contrib.layers.batch_norm的pytorch替代torch.nn.BatchNorm1d() 的一些注意事项

tf版本为1.14,torch为1.13.1,总结,可以用 torch.nn.BatchNorm1d() 替代,但三维输入数据时需要在应用 BatchNorm1d 前对最后两维进行转置,应用后再转置回来。二维输入时可直接替代。
原创
发布博客 2024.01.22 ·
544 阅读 ·
7 点赞 ·
1 评论 ·
11 收藏

NeurIPS 2021 神经主题模型的对比学习 Contrastive Learning for Neural Topic Model

这篇文章的目标是借助了对比学习框架去优化NTM学习到的主题分布和词分布,并将这个框架以多重输入(正样本和负样本都要通过推断网络得到隐向量)的形式融合到NTM的训练过程中,并没有额外地引入其他模块,同时,构建正样本和负样本的方式基于人类对相似文章的认知,关键词出现的次数越多越相似,先抽选出原文的关键词,负样本中关键词占比较少,正样本中不关键的词占比较少。
原创
发布博客 2023.09.14 ·
262 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

2019ACM收录文章 MVAE: Multimodal Variational Autoencoder for Fake News Detection

论文阐述了虚假新闻检测任务中图片,文字信息融合对检测准确率提升的重要性。提出了一种融合了图片和文本信息的VAE应用于虚假新闻检测。
原创
发布博客 2023.08.29 ·
199 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

神经主题模型(NVDM-GSM)

本文介绍了神经主题模型,还希望读者之前有变分自编码器的知识。相比于传统主题模型,其推导更简单,结合了深度学习,在数据集庞大的时候效果较好。
原创
发布博客 2023.08.18 ·
972 阅读 ·
12 点赞 ·
1 评论 ·
4 收藏

两个多维高斯分布的KL散度公式推导

两个多维高斯分布的KL散度公式推导是变分自编码器中损失函数的组成部分,本文假设两个多维高斯分布的每个分变量相互独立,进行了公式推导。
原创
发布博客 2023.08.16 ·
655 阅读 ·
0 点赞 ·
1 评论 ·
11 收藏

变分自编码器(VAE)

本文介绍了变分自编码器,属于深度生成模型,建议读者有EM算法和变分推断的知识。其用两个神经网络拟合了两个复杂的概率密度函数,称为推断网络和生成网络,采用重参数技巧,以便使用梯度下降进行优化。
原创
发布博客 2023.08.11 ·
5257 阅读 ·
12 点赞 ·
1 评论 ·
25 收藏

变分推断(变分贝叶斯)

本文从泛函和变分法的介绍出发,引出两种变分推断算法来解决贝叶斯模型中后验概率难以计算的问题,包括详细的公式推导。
原创
发布博客 2023.08.08 ·
726 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

GMM高斯混合模型

高斯混合模型(Gaussian Mixture Model,GMM)是关于多个高斯分布的加权和,可以用于对含有多峰的数据进行建模,本文采用EM算法对其进行了参数估计,提供了完整的公式推导过程。
原创
发布博客 2023.08.04 ·
147 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

EM算法及公式推导

EM(Expectation Maximum)算法用于解决含隐变量的概率图模型的参数估计问题,基本思想是从样本数据的对数边际似然出发,通过引入变分函数来得到证据下界(ELBO,Evidence Lower BOund),之后让ELBO最大,从而使得对数边际似然最大,采用迭代的方法来最大化边际似然。
原创
发布博客 2023.08.02 ·
270 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

Ant Design Charts中如何为图表中的元素绑定事件

本文以一个可视化项目出发,分享了使用Ant Design Charts时绑定事件的一些教程,并举例详解了实现步骤。
原创
发布博客 2023.07.31 ·
1849 阅读 ·
9 点赞 ·
1 评论 ·
7 收藏