【论文笔记】Contour-enhanced attention CNN for CT-based COVID-19 segmentation

声明

不定期更新自己精度论文,通俗易懂,初级小白也可以理解

涉及范围:深度学习方向,包括 CV、NLP、Data Fusion、Digital Twin

论文标题:Contour-enhanced attention CNN for CT-based COVID-19 segmentation

论文链接:https://doi.org/10.1016/j.patcog.2022.108538

论文代码:

发表时间:2022年1月

创新点

1、提出一种新颖的轮廓感知像素注意解码器

2、提出了一个跨上下文注意融合的上采样模块

Abstract

准确检测 COVID-19 是当今医疗保健部门控制冠状病毒大流行的具有挑战性的研究课题之一。来自胸部 CT 扫描等医学成像模式的 COVID-19 定位的自动数据驱动洞察极大地增加了临床护理援助。

在这项研究中,已经提出了一个 Contour-aware Attention Decoder CNN,以一种非常有效的方式精确分割 COVID-19 感染的组织。它引入了一种新的注意方案来从 CT 轮廓中提取边界、形状线索,并利用这些特征来细化感染区域。对于每个解码的像素,注意力模块从轮廓特征图中获取其空间邻域中的上下文信息。由于通过密集注意力将如此丰富的结构细节整合到解码中,CNN 能够捕捉甚至复杂的形态细节。解码器还增加了跨上下文注意融合上采样,以将深度语义特征稳健地重建回高分辨率分割图。

它采用了一种新颖的像素精度注意模型,该模型绘制了相关的编码器特征以帮助进行有效的上采样。提议的 CNN 在来自 MosMedData 和 Jun Ma 基准数据集的 3D 扫描上进行了评估。 它以 85.43% 的高骰子相似系数和 88.10% 的召回率实现了最先进的性能。

Method

结构如下图所示。

它从一系列编码层MKE开始。

首先,每个编码器块由三个具有不同感受野大小的卷积分支组成。编码器块向下游编码器发射一个主线输出,并向相应的解码器发射三个辅助输出;

然后,在每个解码步骤CPA-Decoder中,都使用交叉注意模型将此辅助编码器特征集与该步骤中的传入特征图合并;

最后,上采样模块CCAF选择性地将该编码器上下文与输入特征图融合以生成解码图。通过一系列此类关注辅助解码步骤,将编码后的映射转换回高分辨率分割图像。

---------------------------------------------------------------------------------------------------------------------------------

MKE

注:MKE 模块的灵感来自混合 Inception-ResNetV2 架构,它将卷积分解为多个可分离的步骤,从而提高了计算效率和更丰富的特征集。

如图所示,MKE块由两个步骤组成,

首先,在输入特征 x 上应用特征化层。其实就是卷积层,此步骤通过线性和可分离卷积导出两个辅助残差连接。通过 1 × 1 滤波器扩展卷积,堆叠残差的维度被放大以匹配特征 x  的通道数;

其次,残差链接为特征流提供了多条路径,并防止梯度信号消失。 当这些残差连接与 Inception 相结合时,训练速度会大大加快;

然后,Inception 结合后的特征,分别进入池化层和两个辅助残差连接,最后主线结果由下游编码器层消耗,而辅助/副线特征由解码器利用。

---------------------------------------------------------------------------------------------------------------------------------

跨语境注意融合(CCAF)上采样器

具体来说,CCAF 的输入端,为 MKE-6 层提供的主线特征经过逐级上采样处理后和同级别提供的三条辅助特征,综合上述作为其输入,并各自分别进入相对应的架构,其中空间分辨率逐级加倍,通道数减半。 

本质上,相当于针对上层进行多维度的上采样,实现不同通道之间的特征提取,并结合同层的三条辅助特征,吸收更多信息, 提高感染区域细节信息提取能力。

---------------------------------------------------------------------------------------------------------------------------------

CPA解码器

 

为了获得具有清晰边界的精确高分辨率区域分割,最终的解码器层注入了显式粗轮廓区域图,如架构图所示。

最后,解码层主要集中在归因语义上下文以恢复空间分辨率。 因此,与学习综合表征特征的内层相比,它们保留了较少的特征通道。当这些层学习将类标签与像素联系起来时,等高线区域图作为辅助信息通道,有助于边界像素的辨别。

---------------------------------------------------------------------------------------------------------------------------------

逐像素注意模块

上图描述了从第 p 个区域上下文图创建注意力加权特征的注意机制。

首先,对位置 (i, j) 处的像素特征 u 应用 1 × 1 卷积,以形成查询向量 Q;

类似地,对来自 rp 的 3 × 3 对应区域执行 1 × 1 卷积,构造键集 Kp; 

然后,在查询 Q 和键 K p 上定义了一个附加注意方案,查询向量 Q 首先被添加到 3 × 3 区域 K p 中的每个空间位置。生成的映射通过双曲正切激活进行缩放,并线性投影到 3 × 3 的注意力权重矩阵并通过空间 softmax 归一化,得到注意力系数矩阵 αp;

最后,Vp 通过 1 × 1 滤波器的卷积获得的,再和 αp 进行点积操作,最终经过 Global sum pooling,输出结果。

由于这种密集的注意力融合,解码器可以有效地区分感染边界像素并产生准确的分割。

---------------------------------------------------------------------------------------------------------------------------------

Experiments

实验目标:来自不同实验的 COVID-19 分割结果的视觉比较。

实验目标:本文架构与最先进的分割方法的性能比较

实验结果: 作者提出的效果最优

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

来自γ星的赛亚人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值