【电力电子】手把手推导buck电路

simulink仿真文件

P_120_buck.slx

buck电路如图所示:
图1 buck电路
注意:

  1. 此篇文章仅为个人学习过程中的一些笔记,必然会有很多不足之处,欢迎批评指正。

  2. 文章内buck电路没有考虑输出电容,实际电路输出电容是不可或缺的。关于buck电路输出电容的作用,请参考这篇文章:buck电路输出电容C的作用

参数

为简化计算:

PWM: T s = 2 e − 6 ( 500 k H z ) , D = 0.5 Ts=2e-6(500kHz),D=0.5 Ts=2e6500kHz,D=0.5

L = 10 e − 6 , R = 10 → τ = L / R = 1 e − 6 L=10e-6,R=10 → τ=L/R=1e-6 L=10e6,R=10τ=L/R=1e6

U D C = 10 V U_{DC}=10V UDC=10V

t [ n ] = n ∗ ( T s / 2 ) t[n]=n*(Ts/2) t[n]=n(Ts/2),即n=1时,结束开通过程,开关关断;n=2时,结束关断过程,开关开通。以此类推。

可以简单的计算出: ( T s / 2 ) / τ = 1 → e − τ = 0.3779 (Ts/2)/τ=1→e^{-τ}=0.3779 (Ts/2)/τ=1eτ=0.3779

过程分析

①从0开始充电,零状态响应
图2 电感充电

I ( t ) = I ∞ ∗ ( 1 − e − t τ ) I(t)=I_∞*(1-e^-\frac{t}{τ}) I(t)=I(1eτt)

计算出: I ∞ = 1 A , I 1 = 1 ∗ e − 1 = 0.6321 I_∞=1A,I_1=1*e^{-1}=0.6321 I=1AI1=1e1=0.6321

②从 I 1 I_1 I1开始放电,零输入响应
在这里插入图片描述
I ( t ) = I 0 + ∗ e − t τ I(t)=I_{0+}*e^-\frac{t}{τ} I(t)=I0+eτt

计算出: I 2 = I 1 ∗ e − 1 = 0.2325 I_2=I_1*e^{-1}=0.2325 I2=I1e1=0.2325

③从 I 2 I_2 I2开始充电,全响应

I ( t ) = I 0 + ∗ e − t τ + I ∞ ∗ ( 1 − e − t τ ) = I ∞ + ( I 0 + − I ∞ ) e − t τ I(t)=I_{0+}*e^-\frac{t}{τ}+I_∞*(1-e^-\frac{t}{τ}) \\=I_∞+(I_{0+}-I_∞)e^-\frac{t}{τ} I(t)=I0+eτt+I(1eτt)=I+(I0+I)eτt

计算出: I 3 = 1 + ( I 2 − 1 ) ∗ e − t τ = 0.7177 I_3=1+(I_{2}-1)*e^-\frac{t}{τ}=0.7177 I3=1+(I21)eτt=0.7177

④从 I 3 I_3 I3开始放电,零输入响应

I ( t ) = I 0 + ∗ e − t τ I(t)=I_{0+}*e^-\frac{t}{τ} I(t)=I0+eτt

计算出: I 4 = I 3 ∗ e − 1 = 0.2640 I_4=I_3*e^{-1}=0.2640 I4=I3e1=0.2640

以此类推。

结论

  • 如图3所示,由于电感参数选取的比较小,因此电感上的电流I_L波动较大, I H = 0.7744 I_H=0.7744 IH=0.7744 I L = 0.3797 I_L=0.3797 IL=0.3797

图3

图3 L = 10 e − 6 L=10e-6 L=10e6时I_L波形

  • 图4所示为调整 L = 10 e − 4 L=10e-4 L=10e4时I_L波形

[外链图片转存中...(img-MfL45uai-1705403669083)]

图4 L = 10 e − 4 L=10e-4 L=10e4时I_L波形

误差: e r r o r = ( 5.5 − 5 ) / 5 = 10 % error=(5.5-5)/5=10\% error=(5.55)/5=10%

纹波: Δ = ( 0.554 − 0.546 ) / 0.550 = 1.45 % \Delta=(0.554- 0.546)/0.550=1.45\% Δ=(0.5540.546)/0.550=1.45%

  • 图3所示为调整 L = 10 e − 3 L=10e-3 L=10e3时I_L波形

[外链图片转存中...(img-F9hl35aF-1705403669083)]

[外链图片转存中...(img-7OFNjLeH-1705403669084)]

图5 L = 10 e − 4 L=10e-4 L=10e4时I_L波形

纹波: Δ = ( 0.5505 − 0.5495 ) / 0.550 = 0.18 % \Delta=(0.5505- 0.5495)/0.550=0.18\% Δ=(0.55050.5495)/0.550=0.18%

Q:结合图2,图3,所示 I L I_L IL在0.55上下波动,理论上应该是在0.5上下波动。为什么会这样?

A:解决过程:

  1. 把电感调至L=10e-6,PWM周期Ts=2e-7, I L I_L IL则在0.5上下波动。

[外链图片转存中...(img-EfhnWO8w-1705403669084)]

  1. PWM周期保持原来的Ts=2e-6不变,把电感调至L=10e-3,, I L I_L IL也在0.5上下波动。

[外链图片转存中...(img-I1XO41Ey-1705403669084)]

  1. 找出原因了,我在调整PWM频率的过程中,增大了PWM采样频率,解决了上述问题。

  2. PWM输出频率和采样频率之间的关系

ps:

  1. 电感参数调大时,充放电变慢,仿真时长也需要延长响应倍数。

  2. 电感的伏秒平衡原则 其公式表达式中的各项是绝对值,不包含方向信息;

电感工作在稳态时,开关导通期间电流的增大值和开关关断期间电流的减小值是相等的,否则电感就不平衡,据此可以推导出伏秒平衡原则。根据公式 U = L d i d t U=L\frac{di}{dt} U=Ldtdi (从中也可得知电感电压超前电流相位90°),得 d i = U d t L di=\frac{Udt}{L} di=LUdt,开关导通期间为 d i ( o n ) = U ( o n ) d t ( o n ) L di(on)=\frac{U(on)dt(on)}{L} di(on)=LU(on)dt(on) ,开关关断期间为 $di(off)=\frac{U(off)dt(off)}{L} ,令两者相等可得伏秒平衡原则 ,令两者相等可得伏秒平衡原则 ,令两者相等可得伏秒平衡原则U(on)dt(on)=U(off)dt(off)$, 即电感两端电压在一个开关周期内的平均值为0,搬运我文章中的图片如下所示,蓝色框里的电感电压平均值为0。

作者:电子小白菜
链接:https://www.zhihu.com/question/374586659/answer/1038446959

  1. 纹波系数计算公式:

[外链图片转存中...(img-remWhb74-1705403669085)]

吃透(DC-DC 电感)纹波率r问题

  1. buck电路电感参数计算

实际做buck电路电感在mH量级,电容在uF量级。

[外链图片转存中...(img-Jg2uR1Rn-1705403669085)]

  1. buck电路电感参数计算(结合实际芯片)

直流阻抗 Rds 也称作 DCR,与电感的导通损耗直接相关,选取电感时候,DCR 越小,效率和温升效果会越好。铜损占电感损耗的大部分,磁损与工作频率,磁芯特性相关,频率越高,磁损越大

我们知道,增大电感,可以有效减小电感纹波电流,从而减小输出纹波电压。但是,相同的磁芯,感量增加时,DCR 会变大,饱和和温升电流会减小,所以需要折中考虑再选择

https://zhuanlan.zhihu.com/p/671708626


### PMSM 永磁同步电机电压约束方程推导 对于永磁同步电机(PMSM),其在d-q坐标系下的动态行为可以通过一组微分方程来描述。为了简化分析并实现有效的控制策略,通常会引入电压约束条件。 #### 静止两相αβ坐标系到旋转dq坐标系转换 首先,在静止的三相ABC坐标系中的电流和电压通过Clarke变换被映射至两相静止αβ坐标系: \[ v_\alpha = \frac{2}{3}(v_a - \frac{1}{2}v_b - \frac{1}{2}v_c) \] \[ v_\beta = \frac{\sqrt{3}}{3}(v_b-v_c) \] 再经过Park变换得到最终的d-q坐标系表示形式[^2]: \[ v_d = v_\alpha\cos(\theta)-v_\beta\sin(\theta) \] \[ v_q = v_\alpha\sin(\theta)+v_\beta\cos(\theta) \] 其中θ代表转子位置角。 #### d-q坐标系下PMSM状态方程 考虑电磁感应定律以及欧姆定律的应用,可以写出如下表达式: \[ u_d=R_s i_d-L_{qd}\dot{i}_q-\omega L_{qq}i_q+\omega\Psi_f \] \[ u_q=R_si_q+L_{dq}\dot{i}_d+\omega(L_{dd}-L_{qq})i_d \] 这里\(u_d\) 和 \(u_q\) 表示定子绕组上的端口电压;\(R_s\) 是每相电阻;\(i_d, i_q\) 分别为直轴(d-axis)和交轴(q-axis)方向上流过的电流;而 \(L_{dd}, L_{qq}\), 及 \(L_{dq}=L_{qd}\) 则分别对应于各自路径所关联的自感系数与互感系数;最后 \(\Psi_f=\phi_pN_rI_m\) 用来表征由永久磁铁产生的通量链[\(^1]^。 #### 构建电压约束方程 考虑到实际应用中逆变器直流母线电压有限制,因此需要构建合理的电压限制条件以确保系统稳定运行。假设最大可用峰值电压为Umax,则有: \[ U_{dc}/\sqrt{2}<|u_d+j*u_q|\leqslant U_{max} \] 即保证合成向量长度不超过给定界限的同时也要满足最小工作电平需求。此不等式的物理意义在于防止因过高的瞬态响应而导致硬件损坏或性能下降。 ```matlab % MATLAB code snippet to visualize voltage constraint circle figure; hold on; ang = linspace(0,2*pi); plot(U_max*cos(ang), U_max*sin(ang),'r','LineWidth',2); % Voltage limit boundary title('Voltage Constraint Circle'); xlabel('Real Axis (V)'); ylabel('Imaginary Axis (V)'); axis equal; grid minor; ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值