洛谷P2240木材加工

题目链接

洛谷P2240

题目描述

木材厂有 n根原木,现在想把这些木头切割成 k 段长度为l的小段木头(木头有可能有剩余)。

当然,我们希望得到的小段木头越长越好,请求出 l的最大值。

木头长度的单位是 cm,原木的长度都是正整数,我们要求切割得到的小段木头的长度也是正整数。

例如有两根原木长度分别为 11 和 21,要求切割成等长的 6 段,很明显能切割出来的小段木头长度最长为 5。

输入格式

第一行是两个正整数 n,k,分别表示原木的数量,需要得到的小段的数量。

接下来 n 行,每行一个正整数 Li​,表示一根原木的长度。

输出格式

仅一行,即l的最大值。

如果连1cm 长的小段都切不出来,输出 0

上代码

#include <stdio.h>
#include <stdlib.h>
int find(int *a,int n,int high,int k);
int main()
{
	int *a=NULL;
	a=(int *)malloc(sizeof(int)*100002);
	int n,k;
	int high=0;
	scanf("%d%d",&n,&k);
	for(int i=0;i<n;i++)
	{
		scanf("%d",&a[i]);
		if(a[i]>high)
		high=a[i];
	}
	printf("%d",find(a,n,high,k));
	free(a);
	return 0;
} 
int find(int *a,int n,int high,int k)
{
	int low=0,mid,x=0;
	int cnt;
	while(low<=high)
	{
		mid=(high-low)/2+low;
		if(mid==0) break;
		cnt=0;
		for(int i=0;i<n;i++)
		cnt+=(a[i]/mid);		
		if(cnt<k) 
			high=mid-1;
		else
		{
			x=mid;
			low=mid+1;
		}

	}
	return x;
}

首先开个大数组(不清楚C语言中10^5能不能直接定义出来)。

int *a=NULL;
a=(int *)malloc(sizeof(int)*100002);

用的是C语言的malloc函数,函数在#include <stdlib.h>头文件中。sizeof()用来求int类型占用几个字节,用4代替sizeof(int)也不是没问题,但是尽量规范一些也不错。
malloc的函数声明大家自行百度,别忘了最后用free()函数释放内存。

int n,k;
int high=0;
scanf("%d%d",&n,&k);
for(int i=0;i<n;i++)
{
  scanf("%d",&a[i]);
  if(a[i]>high)
  high=a[i];
}

n,k是原木的数量和需要得到的小段的数量。high是保存输入原木长度的最大值,
for()循环用来存储树长,顺便找出最高树。

重点来了

int find(int *a,int n,int high,int k)

给大家说说这个函数我的想法。

int find(int *a,int n,int high,int k)
{
	//函数的形参对应的是数组地址,树的个数(避免越界),最高树和需要得到的数量.
	int low=0,mid,x=0;
	//x为返回值 
	int cnt;
	//cnt用来计数,和k比较 
	while(low<=high)
	{
		mid=(high-low)/2+low;
		//不用mid=(high+low)/2是避免high+low太大越界 
		if(mid==0) break;
		/*
		解释下这个判断的作用
		如果k值过大,重复循环时会一直执行high=mid-1;
		可能出现类似high:8到3到1再到0
		当high=0时 mid也为0,无法执行a[i]/mid;
		所以此时退出循环,返回x=0;(第四个还是第五个点会用上) 
		*/ 
		cnt=0;
		for(int i=0;i<n;i++)
		cnt+=(a[i]/mid);	
		//计算总共能分几段	
		if(cnt<k) 
			high=mid-1;
		else
		{ 
		/*
		cnt>=k,用x保存此时树长 ,然后low=mid+1一步步逼近
		如果cnt>=k仍成立,接着存到x里 
		*/
			x=mid;
			low=mid+1;
		}

	}
	return x;
	//x就是最终每一段长 
}

P2240部分背包问题是一个经典的动态规划问题。问题描述是这样的:给定n种物品和一个容量为V的背包。每种物品都有自己的重量w[i]和价值v[i]。求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大。 这里的“部分背包”意味着我们可以选择物品的一部分放入背包中。这里给出一个C++的基本解法示例: ```cpp #include <iostream> #include <algorithm> using namespace std; int dp[1010][1010]; // dp[i][j] 表示前i件物品在不超过j重量的情况下可以获得的最大价值 int main() { int n, V; cin >> n >> V; for(int i = 0; i <= n; ++i) { for(int j = 0; j <= V; ++j) { dp[i][j] = 0; // 初始化dp数组为0 } } for(int i = 1; i <= n; ++i) { int w, v; cin >> w >> v; for(int j = 1; j <= V; ++j) { if(j >= w) { // 如果当前物品重量不超过背包容量,考虑取与不取两种情况,取最大值 dp[i][j] = max(dp[i-1][j], dp[i-1][j-w] + v); } else { // 如果当前物品重量超过背包容量,则不能取这个物品 dp[i][j] = dp[i-1][j]; } } } cout << dp[n][V] << endl; // 输出最大价值 return 0; } ``` 这段代码首先初始化一个二维数组dp,其中dp[i][j]表示考虑前i件物品,当背包容量为j时能够得到的最大价值。之后,通过双层循环,从后往前遍历所有物品,并计算在不超过背包容量的情况下,每种物品的取与不取的最大价值,最终得到的最大价值存储在dp[n][V]中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值