破解Kimi AI 官方提示词模板

有时,想与AI对话,但不知说些什么,卡在提示词上,特别是对于一些相对复杂一些的问题,不知如何下手。现阶段,对于还走在AI应用探索路上的我们来说,太正常不过了。

想来,小编与AI高频接触已近三个月。刚开始时,非常好奇,一切都觉得非常新鲜。但后面想问稍复杂一些的业务问题,如同上面说的,开始犯困了。于是开始在网上搜索提示词相关的学习资料,遇到一些人家设计好的提示词案例,一点也不马虎的做笔记。看到有文章提到的10种提示词框架,如CARE,TRACE,TAG,SPAR等,一个也不放过,复制粘贴保存起来,以为是标准。但随着不断地与AI对话、交流,发现提示词的设计现在并没有什么标准,但是有总体设计原则的,。

因为手上的框架太多,当遇到具体业务问题时,不知道套哪个好。于是一边应用一边梳理,发现这些框架或模板中的项目,都要视情况而定,大部是可选的。

自写了这篇文章后,每次遇稍复杂一些的提示词,就用这个公式套。因为它就只有4个字母,好记。每次写提示词时,再也不会无从下手的感觉,就如同写文章,有了线索就有了抓手,据线索展开就是了。

根据这段时间对提示词万能公式RBTC的应用收获,今天与Kimi提示词专家展开了一轮对话,根据Kimi 官方的提示词模板,对其进行拆解,看看小编梳理的提示词万能公式RBTC是如何与其对应起来的。

还是按老惯例,废话少说,开始上操作。

第1步 让Kimi给出官方提示词模板

Kimi 集成了‘提示词专家’智能体,操作见如下。

进入“提示词专家”界面,输入“请列出提示词空模板,并解释每一要项怎么使用”。注意了,这句话本身就是提示词,但我并没有采用什么提示词框架,主要原因还是问题简单,就一句话可说清楚,这也就是给Kimi的任务。

第2步 分析Kimi 官方提示词模板

我们可分析一下Kimi 官方提示词模板,看看从中可以学习到什么。

它的优点:

1.专业,对于提示词要解决的问题考虑全面;

2.结构清晰,采用结构化方式表达,逻辑清晰;

3.突出关键字,模板中每个要项,采用了英文作为关键字,并首字母大写,有助于记忆;

既然有这些突出优点,我们直接拿来用就好了,是的,可以直接套用。但是,实际应用时,我们会把它复制下来,然后在此模板上改写为自己业务的提示词么。

我想,大概率不会。为什么呢?

两个字:麻烦!

为什么麻烦呢,你看看。

每次与Kimi对话,其实是很随机的,想到什么会问什么,如果对话之前,要套模板,必须要把模板复制过来(当然Kimi已提供了“常用语”功能,可以一键调出来)。但人类天生都有惰性,能怎么简单就怎么来。更何况,平时的大部分问题还是比较简单,随时随地问就是了。当然如果复杂一些的业务,需要做好准备,套模板是有明显好处的,一般情况下都可以拿到你想要的结果。

但问题来了,模板的要项有10项,即便只记关键字的首字母,10个字母也不好记,能不能少一些呢,或者说清楚哪些是必选的,哪些项是可选的。带着这个问题,我问Kimi。

正如所料,Kimi给模板中的10个要项都作出了客观的回答。10个要项中,唯独一项Goals,也即你要Kimi帮你完成的任务(目标)是建议保留的(必选项),其中提到的提示词万能公式RBTC,只有T(Task)是必选,其他都是可选,完全一致。

第3步 提示词万能公式RBTC如何覆盖Kimi 官方模板的?

下面,对Kimi官方模板中的各项,我作一个归并,解释提示词万能公式的来由,期望大家能记住它(就4个字母,完全记得住),让后面遇写提示词时,脑海中有个抓手,再也不犯困。

1、R(Role),角色这一项,如何填?

对于Kimi 模板中提到的Role,它就好像是一个标签,如“语言学专家”。但在实际应用时,我们会设置一个虚拟角色,通常其都有某种特殊能力,也就是模板中的Skills。还有关于角色的介绍(Profile),会发现实际应用时,很自然写在了一起。那么,就顺其自然,写在一起,在Role中介绍,即把Role、Profile、Skills合在一起写。

2、B(Background)背景何时用?

我们看看Background,给Kimi交待任务的背景,是为了让它有更多信息了解上下文。这一点就像人与人之间的沟通,如果有人突然冒出一句与当前环境毫无关系的话,对方会感到很突兀。所以,对于复杂一些的任务,我认为是很有必要告诉Kimi背景的。这与提示词万能公式RBTC中的B一致。

3、T(Task)任务为什么是必须的,如何用?

我们再来看看Goals与Workflow,其中Goals是我们要Kimi完成的任务(目标)。当任务较复杂时,需要通过工作流程拆解任务,让Kimi按步骤执行,逐步完成任务。这也是提示词中让AI具有思维链逻辑最核心的地方,这一点最考验提示词设计者的能力所在。也只有懂得完成任务(业务)的专家才能做好工作流的设计,才能给Kimi AI以好的引导,从而从LLM中拿到好的结果。

4、C(constrains)约束什么?

最后,我们不难发现,Constrains,OutputFormat,Examples 主要是对AI工具输出结果的约束(或限制),示例是指导AI 按你给的样子输出。所以,为了方便记忆,及实际落地应用(分得太细,不太好分),我就合在了Constrains中。

至于,模板中的”Initialization”,不属于提示词的内容,可有可无项。

最后,进行一下小结。

小结:

1.本文对Kimi 官网提示词模板作了优劣势分析(只代表小编观点);

2.针对模板存在的项目多,不好记不易实际落地问题,是小编不断应用中总结梳理提示词万能公式的主要原因。并对万能公式RBTC是如何与Kimi 官方模板对应起来的,作了详细的解析;

3.提示词万能公式,重在灵活应用,但每个人脑海中需要有,就如同我们解决数学问题,有了公式,才有解决问题的抓手。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

  • 7
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值