披上Agent盔甲的RAG,从此不再只是召回生成!

今天我要和大家聊聊一些实战相关的内容。大模型在实际的工业场景下最常见的2个场景分别为应用助手(copilot), 文档/知识库问答(RAG)。事实上后者也逐渐在往更复杂的Agentic方向发展了,今天我们来看以下如何搭建一个可控的RAG Agent。

RAG Agent核心是它的“大脑”,一个复杂的确定性图,它能让AI进行复杂的推理。而且,这个系统一般还能防止“幻觉”。确保所有答案都基于提供的数据,而不是凭空想象。

那我们要完成的这个系统需要具备哪些方面的能力呢?

  • 可控自主,能够回答自定义数据集中的重要问题。

  • 充当系统的“大脑”agent ,能实现复杂的推理。

  • 幻觉低,确保答案仅基于提供的数据,避免人工智能幻觉。

  • 多步骤推理,将复杂的用户查询分解为可管理的子任务。

  • 适应性规划,根据新信息不断更新其计划。

大体的框架图如下:

它是怎么工作的呢?简单来说,就是先把PDF文档加载进来,然后进行文本预处理,生成每个章节的摘要,再把这些内容编码到向量库中。当有人问问题时,AI会先对问题脱敏,生成一个规划,然后再根据这个规划进行细化出执行任务,最后生成最终答案。详细步骤如下:

S1:构建adavanced RAG

数据准备,召回的retriever,可以理解为给文档建立出索引,用户后续的召回。当然在S1的搭建高级RAG中,我们只需要分段的即可。

接下来,可以构建标准的adavanced RAG的流程,召回块 -> 保留与query相关的块 -> 根据是否相关来决定是否需要改写 -> 答案如果可用则结束了 (这里的很多函数都可以在langgraph的官方examples中找到)

S2:从adavanced RAG 到 Agent

对于更复杂的任务,仅通过基于语义相似性检索信息无法回答问题,需要更复杂的pipeline。为了实现这一目标,我们先忘记adavanced rag的流程。我们需要定义出Agent的工具,一般RAG的tool就是S1中的retriever(召回)。(为了更复杂一些,我们在S1数据准备中,准备了3个retriever(文档块、摘要、引用)单独作为不同的tool)

可以得到3个子图:

有了工具,那接下来就是Agent的核心,planning部分了。

计划制定

首先需要制定计划->计划细化到工具上

  1. 制定计划

  2. 计划细化

示例:

question = {"question": "主人公是如何打败反派的?"}   my_plan = planner.invoke(question) # Generate a plan to answer the question   print(my_plan)   refined_plan = break_down_plan_chain.invoke(my_plan.steps) # Refine the plan   print(refined_plan)      #### output   steps1 = [       '识别故事中的主人公和反派。',       '找到主人公和反派之间的高潮或最终对决。',       '分析主人公在这次对决中采取的行动。',       '确定导致反派失败的具体行动或策略。',       '总结发现,回答主人公是如何打败反派的。'   ]      steps2 = [       '通过从书籍块的向量存储、章节摘要或书籍引用中检索相关信息来识别故事中的主人公和反派。',       '通过从书籍块的向量存储、章节摘要或书籍引用中检索相关信息来定位主人公和反派之间的高潮或最终对决。',       '通过从书籍块的向量存储、章节摘要或书籍引用中检索相关信息来分析主人公在这次对决中采取的行动。',       '通过从书籍块的向量存储、章节摘要或书籍引用中检索相关信息来确定导致反派失败的具体行动或策略。',       '通过根据给定上下文回答问题来总结发现,回答主人公是如何打败反派的。'   ]   

计划更新

给定原始问题、当前计划、过去的步骤以及迄今为止汇总的信息,更新计划 (这个类似于一个迭代用到的,一次计划无法完成任务,通过多次收集信息迭代)

任务处理

定义任务处理程序 - 决定是使用哪个工具来处理计划中的每个任务

问题脱敏

脱敏

为了生成一个总体计划,不带任何基于任何先验知识的偏见LLM,我们首先对输入问题进行匿名化,并将名称实体映射到变量中

还原

上面的串联起来

# 用户问题   state1 = {'question': "how did the harry beat quirrell? \n"}    print(f'question: {state1["question"]}')      # 脱敏   anonymized_question_output = anonymize_question_chain.invoke(state1)       ## 脱敏后的问题和脱敏字段   anonymized_question = anonymized_question_output["anonymized_question"]   mapping = anonymized_question_output["mapping"]          print(f'anonimized_querry: {anonymized_question} \n')   print(f'mapping: {mapping} \n')      # 制定计划   plan = planner.invoke({"question": anonymized_question})   print(text_wrap(f'plan: {plan.steps}'))   print("")      # 计划的脱敏信息还原   deanonimzed_plan = de_anonymize_plan_chain.invoke({"plan": plan.steps, "mapping": mapping})      ## 还原后的计划   print(text_wrap(f'deanonimized_plan: {deanonimzed_plan.plan}'))         # output   question:harry是如何打败Quirrell的?      anonimized_querry:X是如何打败Y的?      mapping:{'X': 'harry', 'Y': 'Quirrell'}      plan:[       '确定查询的上下文或领域(例如,体育、竞赛、游戏等)。',       '收集X和Y参加的事件或竞赛的信息。',       '找到X与Y竞争的特定实例或比赛。',       '查找那个特定实例或比赛的结果。',       '分析比赛的细节,以了解X是如何设法打败Y的。',       '总结解释X如何打败Y的关键点。'   ]      deanonimized_plan:[       '确定查询的上下文或领域(例如,体育、竞赛、游戏等)。',       '收集harry和Quirrell参加的事件或竞赛的信息。',       '找到harry与Quirrell竞争的特定实例或比赛。',       '查找那个特定实例或比赛的结果。',       '分析比赛的细节,以了解harry是如何设法打败Quirrell的。',       '总结解释harry如何打败Quirrell的关键点。'   ]   

最后在加一个判断,确定是否能根据信息推出答案

整体的流程图如下:

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值