题目描述
一个旅行家想驾驶汽车以最少的费用从一个城市到另一个城市(假设出发时油箱是空的)。给定两个城市之间的距离D1D1、汽车油箱的容量CC(以升为单位)、每升汽油能行驶的距离D2D2、出发点每升汽油价格PP和沿途油站数NN(NN可以为零),油站ii离出发点的距离DiDi、每升汽油价格PiPi(i=1,2,…,Ni=1,2,…,N)。计算结果四舍五入至小数点后两位。如果无法到达目的地,则输出“No Solution”。
输入格式
第一行,D1D1,CC,D2D2,PP,NN。
接下来有NN行。
第i+1i+1行,两个数字,油站i离出发点的距离DiDi和每升汽油价格PiPi。
输出格式
所需最小费用,计算结果四舍五入至小数点后两位。如果无法到达目的地,则输出“No Solution”。
输入输出样例
输入 #1复制
275.6 11.9 27.4 2.8 2 102.0 2.9 220.0 2.2
输出 #1复制
26.95
思路
这道题整体来说还算一个好做的贪心题
把自己想象成一个贪婪的人哈哈,假装去加油的是自己,很容易想到一个贪婪的策略
我的思路是:
当前来到一个加油站,首先要考虑的是加多少油。为了使总共花的钱最少,很容易想到如果把油加满,满油的最大限程里能遇到比自己还便宜的加油站,那还不如别把油加满,直接加到能开到这个便宜的加油站需要的油。
但是,如果满油的最大限程里面没有更便宜的加油站,那还不如在当前加油站加尽可能多的油,这尽可能多的油油两种情况: 一个是满油的情况下不会超过终点,那就把直接加满,另一个是满油会超过终点,那就把油加到到达终点所需的油量。
有个坑,对我来说是坑,就是不喜欢用return 0,导致一个测试点WA了,一组数据输出了两个一模一样的答案
先上简洁版本
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=1010;
struct node
{
double d,p;
bool operator<(const node &D) const
{
return d<D.d;
}
}a[N];
int main()
{
double d1,c,d2,p0;
int n;
cin>>d1>>c>>d2>>p0>>n;
//两个城市之间的距离为d1
//汽车油箱容量为c
//每升油行驶距离为d2
//出发点每升汽油价格为p0
//沿途油站数量n
a[0].d=0; //出发点
a[0].p=p0;
double dmax=c*d2; //满油最大行驶路程
for(int i=1;i<=n;i++)
{
cin>>a[i].d>>a[i].p;
if(a[i].d-a[i-1].d>dmax) //如果任意两个加油站之间的距离会大于最大行驶路程,那么肯定到达不了终点
{
printf("No Solution\n");
return 0;
}
}
double cr=0;
double val=0;
for(int i=0;i<=n;i++)
{
int pos=-1; //用来存在最大行驶路程dmax中比自己价格还小的加油站位置
if(i) //如果不是起始点,那么每次到达一个加油站降减少相应的油量
{
cr-=(a[i].d-a[i-1].d)/d2;
}
for(int j=i+1;j<=n;j++)
{
if(a[j].d<=a[i].d+dmax&&a[j].p<a[i].p) //在最大路程之内,并且价格比当前的价格小
{
pos=j; //记录这个加油站的位置
break;
}
}
if(pos!=-1) //如果最大范围内还有价钱比自己小的加油站
{
double tempd=a[pos].d-a[i].d;
double oil=tempd/d2; //行驶这段距离要的油量
if(cr<oil)
{
double od=oil-cr; //还差的油量
val+=od*a[i].p; //花钱
cr+=od; //加油
}
}
else //如果最大范围内没有比自己小的,干脆就在本加油点把油加满,但是要注意油加满不能超过终点还有余
{
if(a[i].d+dmax<d1) //满油能跑的路途不会超过终点,并且不是最后一个加油站n,直接把油加满
{
if(i!=n) //不是最后一个加油站
{
double crise=c-cr;
cr=c;//油加满
val+=crise*a[i].p;//花钱
}
else //是最后一个加油站,最后一个加油站满油不会超过终点,其实这个情况在最上面讨论过了,是多写了的,懒得删了
{
printf("No Solution\n");
continue;
}
}
else //油加满后会超过终点
{
//先算当前位置到终点一共需要多少油
double dx=d1-a[i].d; //相距的距离
double toil=dx/d2; //需要的油量
if(cr<toil)
{
double od=toil-cr; //还差的油量
val+=od*a[i].p; //花钱
cr+=od; //加油
}
printf("%.2lf\n",val);
return 0; //return 0不可以少 不然会WA第三个测试点,之前没有写return 0的习惯导致一直WA
}
}
}
}
再上比较麻烦的版本
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=1010;
/*
int D[N]; //油站离出发点的距离
int P[N]; //每升汽油的价格
*/
struct node
{
double d,p;
bool operator<(const node &D) const
{
return d<D.d;
}
}a[N];
int main()
{
double d1,c,d2,p0;
int n;
cin>>d1>>c>>d2>>p0>>n;
//两个城市之间的距离为d1
//汽车油箱容量为c
//每升油行驶距离为d2
//出发点每升汽油价格为p0
//沿途油站数量n
if(n==0)
{
if(c*d2<d1) //满油情况下都跑不到终点
{
printf("No Solution\n");
}
else //满油情况下能跑到终点甚至超过终点
{
double s=d1/d2; //需要多少油
printf("%.2lf\n",s*p0);
}
}
if(n!=0)
{
double dmax=c*d2; //满油最大行驶路程
for(int i=1;i<=n;i++)
{
cin>>a[i].d>>a[i].p;
}
a[0].d=0; //出发点
a[0].p=p0;
sort(a,a+n);
/*for(int i=1;i<=n;i++)
{
if(a[i].d-a[i-1].d>dmax)
{
printf("No Solution\n");
return 0;
}
}
*/
double cr=0; //容量
double val=0;
bool flag1=false;
for(int i=0;i<=n;i++)
{
int pos=-1;
if(i)
{
cr-=(a[i].d-a[i-1].d)/d2;
}
for(int j=i+1;j<=n;j++)
{
if(a[j].d<=a[i].d+dmax)
{
if(a[j].p<a[i].p)
{
pos=j;
break;
}
}
else
{
flag1=true;
break;
}
}
if(flag1)
{
printf("No Solution\n");
return 0;
}
if(pos!=-1) //如果在当前加满油能开到的范围内还有价钱比自己小的加油站
{
double tempd=a[pos].d-a[i].d;
double oil=tempd/d2; //行驶这段距离要的油量
if(cr<oil)
{
double od=oil-cr; //还差的油量
val+=od*a[i].p; //花钱
cr+=od; //加油
}
}
else //加满油的能跑的路途都没有价钱比当前小的或者是已经是最后一个油站找不到pos
{
if(a[i].d+dmax<d1) //满油能跑的路途不会超过终点,并且不是最后一个加油站n,直接把油加满
{
if(i!=n) //不是最后一个加油站
{
double crise=c-cr;
cr=c;//油加满
val+=crise*a[i].p;//花钱
}
else //是最后一个加油站
{
printf("No Solution\n");
return 0;
}
}
else //油加满后会超过终点
{
//先算当前位置到终点一共需要多少油
double dx=d1-a[i].d; //相距的距离
double toil=dx/d2; //需要的油量
if(cr<toil)
{
double od=toil-cr; //还差的油量
val+=od*a[i].p; //花钱
cr+=od; //加油
}
printf("%.2lf\n",val);
return 0;
}
}
}
}
}
963

被折叠的 条评论
为什么被折叠?



