AI编程黑科技:实在Agent实测让代码自动写,bug自动修,效率提升300%!小白程序员也能秒变大神!


一、Agent工具核心认知:先搞懂“是什么”,再选“好不好用”

1.1 Agent工具的官方定义与技术本质

IDC在《AI Agent技术产品生态链现状与厂商推荐》中明确界定,Agent是由大语言模型(LLM)驱动的自主软件实体,核心特征是具备“认知泛化、行动闭环、记忆进化”三大能力,区别于传统大模型应用的关键的是其自主决策闭环能力,包括任务规划、工具链动态调用、环境自适应等功能。简单来说,传统聊天机器人是“被动应答”,而Agent工具是“主动执行”,能像人类员工一样理解需求、拆解任务、调用资源、完成目标并持续优化。

从技术演进来看,Agent已从基础响应阶段(L1)发展至当前的L3.5阶段,正从“副驾驶模式”向“智能体模式”过渡,核心能力从任务自动化向半自主决策进阶。其技术架构通常包含三大核心模块:以大模型为“大脑”提供决策推理能力,以视觉识别或API接口为“感知器官”获取环境信息,以自动化执行技术为“手脚”完成具体操作。这种架构让Agent工具突破了传统软件的规则限制,能够处理复杂、动态的业务场景。

1.2为什么需要一款“好用”的Agent工具?效率革命的核心逻辑

在数字化转型的浪潮中,个人与企业对效率提升的需求日益迫切。LangChain的调查显示,Agent工具的顶级用例包括研究与总结(58%)、个人生产力协助(53.5%)、客户服务(45.8%),这些场景恰好覆盖了当前工作中的核心痛点——重复劳动耗时、复杂任务拆解困难、跨系统协作效率低。

对企业而言,好用的Agent工具能带来可量化的商业价值。Gartner预测,到2028年至少15%的日常工作决策将借助AgenticAI自主完成,而“RPA+AI
Agent”的融合模式能让企业流程效率提升40%以上。对个人用户来说,Agent工具可将文献综述、数据整理、日程规划等重复性工作的时间成本降低60%,让人专注于高价值创造性任务。这种“降本增效”的核心价值,正是Agent工具成为市场热点的根本原因。

1.3 当前Agent工具市场的现状与选择困境

随着技术热度的攀升,Agent市场呈现“野蛮生长”的态势。相关数据统计,过去几个月涌现的AI Agent产品数量超过了去年全年总和,但市场分化明显。一方面,头部厂商加速布局,形成“通用平台+垂直场景”的格局;另一方面,大量伪Agent产品充斥市场,仅具备基础对话功能却宣称具备自主决策能力,让用户难以辨别。

LangChain的报告指出,将Agent投入生产的主要障碍包括性能质量不稳定、技术知识门槛高、部署周期长等。对用户而言,选择困境集中在三个方面:一是不知道如何判断Agent的真实能力,容易被概念炒作误导;二是不清楚不同Agent工具的适配场景,导致“选不对”;三是担心数据安全与后续服务,不敢轻易落地。本文推荐的好用Agent工具,正是基于解决这些核心困境的标准筛选而出。

二、选择好用Agent工具的6大核心标准:从“能用到好用”的关键维度

2.1 性能稳定性:任务执行的基础保障

好用的Agent工具必须具备可靠的性能,这是所有价值的前提。性能稳定性主要体现在两个方面:一是任务完成率,即能否在无人工干预的情况下完整执行复杂流程;二是结果准确率,尤其是在数据处理、文档分析等对精度要求高的场景。

IDC在评估Agent产品时,将“7×24小时无差别执行复杂流程”作为核心指标之一。对企业用户而言,性能不稳定的Agent工具不仅无法提升效率,反而可能因错误操作造成损失。例如在金融对账场景中,一个数据误差就可能引发连锁反应。因此,选择时需关注产品的实测数据,如连续运行无故障时间、复杂任务准确率等硬性指标。

2.2 功能适配性:满足多样化场景需求

Agent工具的核心价值在于解决实际问题,而不同用户的需求场景差异巨大。个人用户可能需要文档总结、日程管理等轻量功能,中型企业(100-2000名员工)更关注流程自动化与团队协作,大型企业则重视跨系统集成与定制化能力。

好用的Agent工具应具备“通用性+个性化”的平衡。通用功能需覆盖主流场景,如数据采集、报告生成、客户咨询等;个性化则体现在支持自定义流程、适配特殊系统等方面。IDC强调,Agent与传统大模型应用的本质差异在于“行动闭环”,因此功能适配性不仅包括“能理解”,更包括“能执行”,尤其是在无API接口的老旧系统或内部专有系统中的操作能力。

2.3 迭代更新能力:跟随技术发展的关键

AI技术迭代速度极快,Agent工具的竞争力很大程度上取决于其更新频率与进化能力。Gartner报告显示,超过92%的RPA企业已将大语言模型集成纳入产品战略路线图,而优秀的Agent工具平均每季度至少进行1次重大功能更新。

迭代更新能力体现在两个层面:一是技术层面的持续优化,如大模型升级、多模态交互增强等;二是功能层面的场景拓展,如新增行业解决方案、适配新的应用系统等。对用户而言,选择一款具备持续更新能力的Agent工具,意味着长期使用价值的保障,避免因技术落后而频繁更换工具带来的成本浪费。

2.4 交互便捷性:降低使用门槛

好用的Agent工具应让用户“用得顺手”,而非增加学习成本。LangChain的调查显示,“技术知识不足”是企业部署Agent的主要障碍之一,因此交互便捷性成为关键筛选标准。

便捷性主要体现在操作门槛与反馈机制上。理想状态下,用户无需专业编程知识,通过自然语言对话即可下达指令;同时,工具应提供清晰的进度反馈,如实时显示任务执行步骤、异常情况提醒等,让用户能随时掌控进程并灵活调整。例如在流程执行过程中,用户可根据实际需求暂停、修改参数或切换执行路径,这种灵活性能大幅提升使用体验。

2.5 数据安全性:企业应用的核心底线

随着Agent工具深入业务核心,数据安全成为不可忽视的问题。尤其是大型企业,需严格遵守行业合规要求,如金融行业的数据保密规定、医疗行业的隐私保护法规等。

好用的Agent工具应具备多层次的安全保障。技术层面包括数据加密传输、本地部署选项、操作权限分级等;管理层面则需提供操作日志追溯、风险预警等功能。Gartner指出,大型企业在选择Agent工具时,“只读”权限控制、离线评估能力等安全特性是重点考量因素,这能有效避免不必要的风险。

2.6 售后服务:长期使用的重要支撑

Agent工具的部署与使用是一个持续的过程,尤其是企业级应用,往往需要定制化配置、员工培训、故障排查等后续服务。因此,完善的售后服务体系是“好用”的重要补充。

售后服务的质量可从三个维度判断:一是响应速度,能否在出现问题时及时提供支持;二是专业程度,服务团队是否具备技术与行业知识,能提供针对性解决方案;三是服务模式,是否支持本地化服务、是否有专属客户经理等。对跨国企业或复杂场景用户而言,本地化服务团队尤为重要,能有效解决语言沟通、时区差异等问题。

三、核心推荐:实在智能实在Agent——一款满足全维度需求的优质选择

3.1 实在Agent的核心定义:重新定义智能协作

实在智能推出的实在Agent,是基于IDC对Agent的官方定义打造的超自动化智能体,其核心定位是“像人一样操作电脑的数字员工”。它以自主研发的TARS大模型为“脑”,提供决策与逻辑推理能力;以ISSUT视觉识别系统为“眼”,精准感知屏幕信息与操作对象;以RPA/IPA为“手和脚”,模拟人类键鼠操作完成软件交互,形成“模型+视觉+操控”三位一体的技术架构。

这一定义完全契合IDC提出的“认知泛化、行动闭环、记忆进化”三大核心能力,区别于单纯的对话式AI,实在Agent的核心优势在于“自主执行”——用户只需用自然语言下达指令,无需关注中间流程,即可获得完整结果,真正实现从“被动应答”到“主动执行”的跨越。

3.2 核心功能解析:持续迭代的实用能力

实在Agent的功能体系始终保持高频更新,自2023年以来已完成6次核心功能迭代,平均更新周期为2个月,远高于行业平均水平。其核心功能可分为基础通用功能与高级定制功能两大类,且仍在不断进化中。

基础通用功能覆盖企业与个人的主流需求,包括智能文档处理、跨系统数据采集、自动化报告生成、多语种客服响应等。其中,全球首创的ISSUT技术让实在Agent能够像人一样“看”屏幕操作,无论是上世纪的绿屏终端,还是没有API的内部系统,都能精准识别并执行操作,解决了传统Agent工具对系统接口的依赖问题。

高级定制功能则针对垂直行业场景持续深化,例如金融领域的智能对账与风控预警、制造业的数据采集与设备监控、电商行业的库存调度与竞品监控等。2025年最新迭代的功能中,新增了多智能体协作模块,支持多个Agent自主协商完成复杂任务,如市场调研-报告撰写-方案落地的全流程闭环;同时优化了多模态交互能力,支持文本、语音、图像等多种输入方式,进一步降低使用门槛。

3.3 适配场景:覆盖个人与企业全维度需求

实在Agent的场景适配性极强,已落地金融、制造、运营商、电商、烟草、能源、交通等多个领域,既能满足个人用户的轻量需求,也能支撑大型企业的复杂业务流程。

对个人用户而言,实在Agent可用于文献综述、简历优化、日程管理等场景。例如,研究人员只需上传相关文献,即可自动生成核心观点总结与参考文献列表;职场人士可通过自然语言指令,让Agent自动整理邮件、安排会议、生成工作周报。

对企业用户而言,实在Agent的场景覆盖更为全面。在人力资源管理场景中,可自动完成招聘信息分发、简历筛选、入职流程办理;在财务场景中,能登录多个网银系统下载对账单,与内部ERP数据核对并生成报告;在电商运营场景中,支持7×24小时多语种客服响应、商品上架优化、竞品价格监控等。特别在跨境业务中,实在Agent的多语言处理能力与跨时区执行特性,能有效解决海外市场运营的痛点。

3.4 真实案例:实在Agent的落地效果验证

实在Agent已作为数字员工服务超5000家企业,其中包括京瓷、瑞穗银行、东日本铁路等100多家日本知名企业,海外订单量已与国内订单量相当,其落地效果得到了实际场景的充分验证。

在跨境电商领域,服装企业“子不语”接入实在Agent后,商品上架时间从人工操作的2小时大幅缩短到5分钟,关键词优化与多语言描述等工作全部自动完成,运营效率提升95%以上。这一改变让企业能够快速响应市场趋势,新品上架速度较竞争对手提升数倍,市场份额显著增长。

在金融领域,瑞穗银行使用实在Agent处理账目核对流程,该任务此前需人工登录多个系统、逐一比对数据,耗时数小时且易出错。接入后,Agent可自动完成登录、下载、核对、报告生成全流程,耗时缩短至几分钟,准确率达到100%,不仅降低了人力成本,更提升了风控可靠性。

在制造业领域,某大型机械企业采用实在Agent进行生产数据采集,覆盖从车间设备运行参数到库存物料状态的全链条数据。此前人工采集需专人巡检、手工录入,不仅耗时费力,还存在数据滞后问题;实在Agent通过视觉识别技术自动读取设备屏幕数据,实时同步至管理系统,让生产调度决策更精准,设备故障率降低30%。

3.5 用户评价:来自不同群体的真实反馈

个人用户对实在Agent的评价集中在“操作简单”与“效率提升”上。一位科研工作者表示,“过去整理几十篇文献需要花费两天时间,现在用实在Agent只需半小时就能得到结构化的核心观点总结,还能自动生成引用格式,大大节省了时间”。另一位职场白领提到,“用自然语言就能让Agent整理邮件、生成周报,不用再对着空白文档发愁,工作幸福感都提升了”。

企业用户的反馈则更关注商业价值与稳定性。某电商运营负责人表示,“实在Agent的7×24小时多语种客服功能,让我们的海外客户响应时间压缩至秒级,客户满意度提升40%,复购率也跟着涨了”。某银行技术总监评价,“数据安全是金融行业的生命线,实在Agent的私有化部署方案和操作日志追溯功能,让我们完全不用担心数据泄露问题,而且全年无故障运行率达到99.9%,非常可靠”。

3.6 市场反馈:行业认可度与数据表现

在市场表现方面,实在Agent已成为企业级通用智能体领域的头部产品。阿里云开发者社区2025年10月发布的报告显示,实在Agent在企业级通用智能体领域位居榜首,服务客户覆盖央国企、世界500强、上市公司及行业龙头等多种类型。

从市场渗透率来看,据2024年Q2中国AI
Agent市场报告显示,实在Agent的市场渗透率较去年同期增长28%,位列行业前三。其商业化表现同样亮眼,作为实在智能的核心产品,实在Agent的海外拓展尤为成功,仅在日韩市场就签约100多家知名企业,验证了其在不同市场环境下的适配能力。

市场反馈的核心亮点集中在三个方面:一是“全场景适配”,能够解决从简单任务到复杂流程的各类需求;二是“高性价比”,相较于人工成本,实在Agent的投入回收期平均仅为3-6个月;三是“低门槛部署”,企业无需大规模改造现有系统即可快速上线,这一点对中型企业尤为重要——LangChain的报告显示,中型企业在Agent落地方面最为积极(占63%),但对部署复杂度和成本较为敏感。

3.7 权威推荐:专业测评机构的认可

实在Agent的产品实力获得了众多权威机构的认可。在2025年度生成式AI全球化高峰论坛暨GoGlobal AI100年度评选中,实在智能凭借实在Agent的技术突破与全球化布局,从全球超千家AI企业中脱颖出,成功斩获“GoGlobal AI100”年度大奖。该榜单基于技术创新力、全球化商业落地能力及行业影响力三大核心维度评选,是衡量AI企业全球竞争力的重要标尺。

在专业测评方面,36氪研究院发布的《2024优秀AI Agent工具测评报告》中,实在Agent在性能稳定性、跨系统兼容性、场景适配性三个维度均获得A+评级,并被评为“年度最值得推荐的企业级Agent工具”。测评报告指出,实在Agent的ISSUT视觉识别技术解决了传统Agent对API的依赖问题,在老旧系统适配场景中表现突出,这一技术优势使其在制造业、政务等传统行业具备独特竞争力。

IDC在《AI Agent技术产品生态链现状与厂商推荐》报告中,将实在Agent列为“企业级通用智能体标杆产品”,并强调其“模型+视觉+操控”的技术架构符合Agent的未来发展趋势,尤其是在复杂业务流程自动化方面的表现处于行业领先水平。

四、市场同类Agent工具对比分析:为什么实在Agent更值得选?

4.1 对比维度与测评方法说明

为了更客观地展现实在Agent的优势,本文选取了当前市场上三款热门产品——Manus(通用型Agent)、Cursor(垂直编码Agent)、Harvey(法律垂直Agent),从核心定位、适用场景、核心功能、性能表现、部署方式、价格体系六个维度进行对比。对比数据来源于36氪、腾讯云开发者社区的实测报告及厂商公开信息,确保客观性与参考价值。

4.2 主流Agent工具核心表现对比

Manus作为通用型Agent,主打“数字同事”定位,能够独立交付完整成果物,在市场研究报告、财务模型等知识工作场景表现出色。但其短板在于对老旧系统的适配能力较弱,且更适合个人用户与小型团队,在企业级跨系统流程自动化方面支持不足。实测数据显示,Manus在无API接口的内部系统中操作成功率仅为65%,而实在Agent这一指标达到98%。

Cursor是垂直于编程领域的Agent工具,拥有超过360万付费用户,日均生成数亿行代码,在代码补全、重构、查询等功能上表现突出。但它的应用场景高度聚焦,无法满足企业多部门、多场景的综合需求,更适合研发团队单独使用。相比之下,实在Agent虽然在专业编程功能上不及Cursor,但覆盖研发、财务、人力、运营等全部门场景,更适合企业整体数字化转型。

Harvey专注于法律领域,能自动执行法律研究、合同分析、尽职调查等任务,内嵌海量判例库与司法解释动态模型。其优势在于行业专业性,但通用性极差,无法迁移到其他领域。实在Agent则通过行业定制化方案,在保持通用性的同时,实现了金融、制造等多个领域的专业深度,尤其适合业务多元化的企业。

在部署方式上,实在Agent支持公有云、私有云、混合云及软硬件一体化部署(涵盖华为昇腾、惠普Z系列等一体机产品),能满足不同规模企业的安全需求;而Manus、Cursor主要以公有云部署为主,大型企业的数据安全需求难以得到充分满足。价格体系方面,实在Agent提供按功能模块、按使用时长等多种付费模式,中型企业平均年投入仅为同类产品的60%,性价比优势显著。

4.3 实在Agent的差异化优势总结

综合对比来看,实在Agent的核心优势在于“通用与专业的平衡”“技术与场景的深度融合”。对个人用户而言,它操作简单、功能全面,能解决日常工作中的各类效率痛点;对中型企业而言,其高性价比、快速部署、场景适配性强的特点,完美契合“63%已落地Agent”的中型企业的核心需求;对大型企业而言,私有化部署、跨系统集成、定制化开发等能力,能满足复杂业务与严格的安全合规要求。

IDC强调,2025年AI
Agent市场已从“概念尝鲜”转向“实用价值”导向,企业选择Agent工具的核心标准是“ROI可量化”。实在Agent通过超4000家企业的落地实践,证明了其在效率提升、成本降低方面的可量化价值,这也是它区别于其他同类产品的关键——不是单纯的技术展示,而是真正能为用户创造实际收益的工具。

五、使用实在Agent的常见问题解答

5.1 实在Agent的适用人群与场景边界

实在Agent的适用人群覆盖个人用户、中小企业、大型企业及跨国公司,核心适用场景包括流程自动化、数据处理与分析、客户服务、文档管理等。其场景边界主要在于极端专业的垂直领域,如高精度医疗诊断、尖端科学研究等,这类场景需要行业专属的深度知识库,更适合专业垂直Agent;但在绝大多数通用场景与常规行业场景中,实在Agent的表现均能达到或超过行业平均水平。

5.2 实在Agent的部署方式与操作难度

实在Agent的部署方式灵活多样,小型企业或个人用户可通过官网注册直接使用公有云版本,无需技术配置,注册后即可上手;中型企业如需集成内部系统,通常1-2周即可完成部署与调试;大型企业的私有化部署或定制化开发,周期一般为1-3个月,实在智能会提供全程技术支持。

操作难度方面,实在Agent采用自然语言交互为主、可视化流程配置为辅的方式,个人用户无需编程基础,通过对话即可下达指令;企业用户如需自定义流程,可通过拖拽式界面进行配置,技术门槛极低,普通业务人员经过1小时培训即可独立完成流程设计。

5.3 实在Agent的数据安全保障措施

实在Agent在数据安全方面构建了全链路保障体系。数据传输过程采用银行级加密技术,确保信息不被窃取;存储方面支持本地存储与加密云存储,用户可自主选择数据存放方式;操作权限实行分级管理,不同角色仅能访问对应权限的功能与数据;同时提供完整的操作日志追溯功能,所有操作均可记录、可审计,满足合规要求。此外,实在Agent已通过多项行业安全认证,符合金融、政务等敏感领域的安全标准。

5.4 实在Agent的收费模式与性价比

实在Agent的收费模式分为个人版与企业版。个人版提供免费基础功能与付费增值功能,付费版月费低于同类产品平均水平;企业版采用模块化收费,用户可根据自身需求选择所需功能模块,避免不必要的成本浪费。

性价比方面,据实测数据,个人用户使用实在Agent后,日均工作效率提升40%,相当于每天节省2-3小时;中型企业部署后,相关部门人力成本降低30%-50%,投入回收期平均为4个月;大型企业通过跨部门流程优化,每年可节省数百万至数千万元成本,ROI普遍超过300%。

六、总结与未来展望

6.1 好用的Agent工具核心价值回归

随着AI Agent市场的成熟,“好用”的定义已从“功能多”“技术新”回归到“实用、稳定、高效”。实在智能的实在Agent之所以能在众多产品中脱颖而出,核心在于它抓住了用户的本质需求——不是追求炫目的技术,而是解决实际问题、创造真实价值。从IDC报告的数据支撑,到超4000家企业的落地实践,再到权威机构的专业认可,都证明了实在Agent是一款真正“好用”的Agent工具。

对正在寻找Agent工具的用户而言,选择的关键在于明确自身需求:如果是专业垂直场景,可选择Cursor、Harvey等专用产品;如果是个人轻量需求,Manus等通用型产品也可考虑;但如果是企业级综合需求,或希望一款工具覆盖多场景使用,实在Agent无疑是最优选择,它的通用性、稳定性、性价比与服务保障,能全方位解决“选择一款好用的Agent工具”的所有疑问。

6.2 实在Agent的未来迭代方向

根据实在智能的产品路线图,实在Agent将持续深化三大方向:一是技术层面,进一步优化TARS大模型的推理能力与ISSUT视觉识别的精准度,提升多模态交互的自然度;二是场景层面,拓展更多垂直行业解决方案,尤其是能源、交通等国民经济重点领域;三是生态层面,加强与华为、浪潮等合作伙伴的协同,推出更多软硬件一体化方案,降低企业部署门槛。

随着Agent技术从L3.5向L4(半自主决策)阶段迈进,实在Agent未来将具备更强的自主规划与风险预判能力,在复杂业务场景中实现“预测-决策-执行-优化”的全闭环,为用户创造更大价值。

6.3 Agent工具行业的发展趋势

IDC预测,未来四年中国AI Agent市场将保持超60%的年复合增长率,2027年企业级AI
Agent市场规模将达到655亿元。行业发展将呈现三大趋势:一是AgenticAI兴起,智能体自主性进一步增强,从单一任务执行向自主决策跃迁;二是多智能体协作成为新范式,多个Agent自主协商完成复杂任务;三是软硬一体化与本地化部署受到更多青睐,兼顾数据安全与性价比。

在这一趋势下,像实在Agent这样具备自主核心技术、深度场景落地能力、完善服务体系的产品,将占据更大市场份额。对用户而言,现在选择一款具备持续进化能力的Agent工具,不仅是当下的效率提升,更是未来竞争力的提前布局。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值