在一次全球范围的旅行规划测试中,部署了 LangGraph DeepAgents 的多智能体系统,在接收到“带父母去东京5天,预算2万,行程轻松”的用户请求后,自动协调4个专业智能体,仅用3秒就返回了包含航班比价、酒店筛选、景点推荐和总预算19,800元人民币的完整计划。
LangGraph DeepAgents 是 LangChain 团队在 2024 年开源的一套革命性图式智能体编排框架,它彻底改变了多个大语言模型(LLM)之间的协作方式。与传统的线性智能体调用不同,DeepAgents 通过图结构建模,让多个专业智能体像足球队成员一样各司其职、协同配合。
01 LangGraph DeepAgents 的核心理念与设计哲学

LangGraph 的设计初衷是解决传统链式智能体架构在复杂任务编排上的局限性。在传统架构中,智能体通常以线性方式执行,缺乏循环、分支等复杂控制流,状态管理也停留在简单的会话记忆层面。
核心对比:传统链式 vs. LangGraph 图式
下图展示了两种架构的核心差异:
| 对比维度 | 传统链式架构 | LangGraph 图式架构 |
|---|---|---|
| 控制流 | 线性、易失控 | 图结构、循环/分支原生支持 |
| 状态管理 | 会话级记忆 | 持久化快照、可回溯 |
| 人审干预 | 事后补救 | 任意节点可插人审 |
| 调试体验 | 黑盒日志 | 节点级可视化、时间旅行 |
(基于 LangGraph 核心设计理念)
LangGraph 的 DeepAgents 概念在 2025 年第二季度迎来了 Cloud-Native 正式版,支持 Serverless 自动扩缩容与零停机热更新,标志着这一框架已进入生产就绪阶段。
02 架构深度解析:DeepAgents 的三大核心机制
LangGraph DeepAgents 的核心设计思想是采用“指挥官-子兵”模式,由主智能体(MainAgent)接收初始任务,进行规划拆解,再委托给专业化的子智能体(SubAgents)执行。这种设计比一次性制定完整计划的模式(Plan-and-Execute)更加灵活,主智能体可以在执行中根据情况动态调整规划。
状态管理与持久化机制
LangGraph 的状态管理是其最强大的特性之一。在 DeepAgents 中,每个智能体节点都可以访问和修改共享状态,而 Reducer 函数则控制着状态更新的具体方式。
通过定义不同的状态模式,开发者可以精确控制数据的流动和持久化。LangGraph 支持使用 TypedDict、Pydantic 模型或数据类来定义状态模式。
对于涉及聊天模型的应用程序,LangGraph 提供了内置的 add_messages Reducer 来处理消息更新,这是一个多功能的状态表示方式。
智能体间通信与协调
DeepAgents 内部的通信机制基于状态共享和消息传递。主智能体负责任务分解和分配,子智能体专注于执行特定任务,并将结果写回共享状态。
通过 Send API 实现 Map-Reduce 工作流,通过 Command API 结合状态更新和节点间“跳转”。这种设计使得智能体间的协作更加高效和灵活。
工具集成与动态调用
工具是智能体能力的扩展。LangGraph DeepAgents 可以访问多种工具,从简单的计算器到复杂的数据库查询和外部 API 调用。
给智能体提供正确且恰当描述的工具至关重要。工具包(Toolkits)概念将3-5个相关工具组织在一起,帮助智能体实现特定目标。
03 实战:构建你的第一个 DeepAgents 工作流
下面通过一个实际案例,展示如何使用 LangGraph 构建一个多智能体旅行规划系统。
环境准备与安装
首先安装 LangGraph 及相关依赖:
pip install langgraph
LangSmith 是官方推荐的可观测性平台,提供5K次/月的免费调试运行。
定义智能体状态与工具
定义旅行规划的状态结构:
from typing import TypedDict, Listfrom langchain_core.messages import BaseMessagefrom langgraph.graph import StateGraph, START, ENDclass TravelState(TypedDict): query: str plan: dict alerts: List[str] messages: List[BaseMessage]
定义智能体使用的工具,如机票比价、酒店搜索等。
创建多智能体图结构
构建包含多个专业智能体的图结构:
from langgraph.prebuilt import create_react_agent# 创建各个专业智能体planner_agent = create_react_agent(llm=planner_llm, tools=[])flight_agent = create_react_agent(llm=flight_llm, tools=[flight_search_tool])hotel_agent = create_react_agent(llm=hotel_llm, tools=[hotel_search_tool])local_guide_agent = create_react_agent(llm=guide_llm, tools=[local_recommendation_tool])# 构建图结构builder = StateGraph(TravelState)builder.add_node("planner", planner_node)builder.add_node("flight_agent", flight_agent_node)builder.add_node("hotel_agent", hotel_agent_node)builder.add_node("local_guide", local_guide_node)# 定义控制流builder.add_edge(START, "planner")builder.add_edge("planner", "flight_agent")builder.add_edge("planner", "hotel_agent")builder.add_edge(["flight_agent", "hotel_agent"], "local_guide")builder.add_edge("local_guide", END)graph = builder.compile()
执行与可视化调试
执行工作流并利用 LangGraph 的可视化工具进行调试:
# 执行工作流result = graph.invoke( {"query": "带爸妈去东京5天,预算2万,行程不要太累"}, {"configurable": {"thread_id": "user_123"}})# 查看结果print(result["plan"])
LangGraph 提供了内置的可视化实用程序,可以清晰地展示图结构和执行流程。
04 LangGraph DeepAgents 的高级特性
函数式 API:更灵活的编程范式
2025年1月,LangGraph 引入了函数式 API,为开发者提供了构建 AI 工作流程的另一种方式。函数式 API 使用 entrypoint 和 task 两个装饰器,允许使用标准函数和常规控制流来定义工作流程。
函数式 API 支持人机环路交互,可以在工作流程中暂停以等待人工输入,然后从中断处继续执行。这对于需要人工审核或验证的关键任务特别有用。
持久化与检查点机制
LangGraph 内置了强大的持久化层,支持短期记忆和长期记忆。短期记忆通过 previous 参数自动提供对话线程中上次检查点的状态。
长期记忆则通过 store 参数实现,允许在不同对话之间存储和检索用户相关信息。这种机制使得智能体可以学习和适应用户偏好。
流式传输与实时更新
LangGraph 提供内置的流式传输支持,可以实时传输三种类型的数据:工作流程进度、LLM 令牌和自定义更新。通过 stream_mode 参数,可以选择订阅不同类型的流。
可观测性与调试支持
LangGraph 提供节点级的可视化调试和时间旅行功能。通过与 LangSmith 集成,可以跟踪工作流程的进度,识别瓶颈,并进行问题排除。
生产级部署还需要考虑系统级监控,如使用 Prometheus 收集指标,以及设置 SLA 告警。
05 生产环境的最佳实践与性能优化
性能调优策略
下表总结了 LangGraph DeepAgents 在生产环境中的性能调优要点:
| 指标 | 目标值 | 优化策略 |
|---|---|---|
| 冷启动 | <3秒 | 预置 GPU 池 |
| 节点延迟 P95 | <800ms | 流式输出 + 并行 |
| 吞吐量 | >100 req/s | 水平分片 |
(基于生产环境性能调优数据)
成本控制与监控
使用 LangSmith 的成本仪表板可以实时监控 Token 费用,设置预算阈值告警,并进行模型级成本对比。
模型 Fallback 机制是控制成本的有效手段,当主模型失败或异常时,可以降级使用备用模型。
安全性考虑
在定义工具时要特别注意最小权限原则,只给智能体访问完成任务所必需的工具和数据的权限。对用户输入进行适当的验证和清理,防止注入攻击。
06 对比分析:DeepAgents 与传统多智能体架构
架构复杂度对比
传统多智能体系统通常需要开发者手动管理智能体间的通信、状态同步和错误处理。DeepAgents 通过图结构和内置的持久化层,大大简化了这些复杂性。
开发效率对比
使用 LangGraph 的预构建组件和可视化工具,开发多智能体工作流的效率可提高3-5倍。开发者可以专注于业务逻辑,而不是底层的基础设施。
系统可维护性对比
LangGraph 的模块化设计和可视化调试工具使得系统更容易维护和扩展。新增智能体或修改工作流程不再需要重构整个系统。
07 LangGraph 1.0.4 最新特性与未来展望
2025年11月,LangGraph 发布了 1.0.4 版本,这是继 1.0.3 之后又一次重要的功能优化与问题修复版本。主要更新包括:
- 流模式稳定性提升:修复了在流模式下可能发生的值中断问题,提升了流处理的稳定性。
- Python SDK 增强:增补了更多的类型检查规则,提升开发过程中类型推断的准确性。
- 代码结构优化:分离了
prepare_push_*系列函数,提升了代码的可维护性与模块化程度。 - 配置简化:移除远程图可配置字段中的线程 ID,简化了配置逻辑。
未来,LangGraph 团队将继续专注于性能优化、开发者体验提升和企业级功能增强。特别是在模型集成、安全性和大规模部署方面,预计会有更多创新。
随着 LangGraph 1.0.4 版本的发布,开发团队已经清除了代码中不再使用的引用,使框架更加整洁和高效。最新的预构建版本也修复了部分警告信息,确保了构建输出的干净与稳定。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

1314

被折叠的 条评论
为什么被折叠?



