MemoRAG:​通过受记忆启发的知识发现迈向下一代RAG

今天分享的是一篇由北京人工智能研究院与中国人民大学高瓴人工智能学院联合发布的文章:

MEMORAG: MOVING TOWARDS NEXT-GEN RAG VIA MEMORY-INSPIRED KNOWLEDGE DISCOVERY

MemoRAG:通过受记忆启发的知识发现迈向下一代RAG

论文链接: https://arxiv.org/abs/2409.05591

代码地址:https://github.com/qhjqhj00/MemoRAG

摘要

本篇文章介绍了一种新型的检索增强生成模型——MemoRAG。MemoRAG 采用双系统架构:一方面,它使用轻量但长距离的 LLM 形成数据库的全局记忆。当任务出现时,它生成草稿答案,引导检索工具定位数据库中的有用信息。另一方面,它利用一种复杂但表达能力强的 LLM,根据检索到的信息生成最终答案。它解决了现有 RAG 系统在处理模糊信息需求和非结构化知识方面的局限性。实验表明,MemoRAG 在复杂和简单任务中均表现出色。

方法

在这里插入图片描述

上图展示了标准RAG与MemoRAG在处理需要对整个数据库进行深入理解的查询时的比较。在左图中,由于输入查询的隐式性质,标准RAG难以准确定位所需的上下文,从而导致答案不太准确。在右图中,MemoRAG框架引入了一个智能接口,将任务与数据库中的相关知识连接起来。对于每个给定的任务,MemoRAG 会通过记忆模块生成检索线索。这些线索本质上是基于数据库压缩表示(即记忆)生成的草稿答案。尽管可能包含一些错误的细节,但这些线索能够明确揭示任务的底层信息需求。通过将这些线索作为查询,MemoRAG 能够有效地从数据库中检索必要的上下文,从而得出精确而全面的答案。

根据上述机制,记忆模块需要具备以下两点能力:

  • 1 保持性:能够记住整个数据库的全局信息;

  • 2 指导性:能够提供有用的线索以全面检索所需知识。

因此,作者引入了双系统架构,使用轻量的 LLM 作为记忆模块,重型 LLM 用于执行检索增强生成。

MemoRAG框架的工作过程可以表示为:

其中 和 分别表示生成模型和检索模型。( ) 代表输入查询,( ) 是从相关数据库 ( ) 中检索到的上下文, ( ) 是最终答案,( ) 代表一个可能不完整或缺乏细节的暂定答案,作为一组答案线索,指导从 ( ) 中检索最相关的上下文。

下面将详细介绍每一阶段:

  1. 生成线索 :

在获取到问题 与数据库 后,采用记忆模型 作为输入查询 和相关数据库 之间的语义桥梁生成有助于检索的线索 。

  1. 检索相关文档 :

在获取到优化后的检索线索 后,通过检索模型 在数据库 中搜索相关的上下文 。

  1. 生成答案 :

在获取到问题 与 相关的上下文 后,采用生成模型 生成最终回答 。

实验

在这里插入图片描述

本篇文章在三个基准上使用了三种不同的生成器(Llama3-8B-Instruct-8K、Phi-3-mini-128K、Mistral-7B-Instruct-v0.2-32K)测试了MemoRAG的性能,结果表明 MemoRAG 在各种数据集和查询类型上显著提升了标准 RAG 方法和其他基线的性能。

总结

MemoRAG区别于传统RAG系统,它通过引入记忆模块实现对数据库的全局理解,并回忆与查询相关的线索,从而提升检索的准确性和上下文丰富度。这一设计显著增强了MemoRAG在处理复杂任务、模糊信息需求以及非结构化知识时的表现,展示了在处理复杂推理和长文档任务中的巨大潜力,适用于多领域的实际应用。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值