Llamacoder是Claude Artifacts的开源实现。
最大的亮点就是,左侧AI写代码,右侧实时渲染。
之前给大家推荐过一个基于Claude做的,Llamacoder是用了Meta 的 Llama 3.1 405B 作为底层语言模型。
让我很开心的是,还选择了Qwen 72B ,国产大模型真的走出国门且被认可。给Qwen点个大大的赞!

Llamacoder开源了,不知道国内套壳站会不会又多了一个新方向。
虽然我也想用Claude,但是太容易封号了。开源的如果效果不错,我是愿意平替的。
项目简介
Llama Coder 是一个基于 Llama 3.1 405B 构建的开源项目,专注于通过单一指令生成小型应用程序。
该项目整合了多种技术,包括使用 Meta 的 Llama 3.1 405B 作为语言模型,Together AI 为模型推理提供支持,并通过 Sandpack 提供代码沙盒环境。还利用 Next.js 作为应用路由,Helicone 进行可观测性监控,以及 Plausible 进行网站分析。
项目主要目标是通过简化代码生成流程,使用户能够快速从想法转变为实际可运行的应用,未来还计划增加多语言支持和改进用户界面。
技术特点
-
Llama 3.1 405B 语言模型:采用 Meta 的高效语言模型进行代码生成。
-
Together AI 模型推理:利用 Together AI 提供强大的模型推理能力,确保代码生成的准确性。
-
Sandpack 代码沙盒:通过 Sandpack 提供即时的在线代码编辑和测试环境。
-
Next.js 应用路由:使用 Next.js 实现动态的网页应用路由功能。
-
Helicone 可观测性监控:通过 Helicone 工具监控应用性能和状态。
-
Plausible 网站分析:集成 Plausible 进行访问分析,优化用户体验。
DEMO
认真体验了一下,跟Claude使用上区别不大,但是开源实现是真香。

先来做个科学计算器试试。

左侧写代码,右侧直接渲染。体验上还是很棒的。
功能也测试了,它知道1+1=2。
发现没有指数运算,再来测下它修改代码的能力。
直接在输入框里输入需求就可以了。

用AI写代码很简单,用AI快速写一个可用的软件,Llamacoder直接替我们实现了。
这强大的开源开发者,真猛啊。
你难任你难,再麻烦的功能我都手搓出来开源。
页面的美观程度,我说实话,不如之前给大家推荐的那个Bolt.new,那个是基于Claude做的。

左边是Bolt.new,右边是Llamacoder。
但是Bolt.new没开源,那么。。。
Llamacoder是不是大家再努力努力,搞个进阶版本。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】


4523

被折叠的 条评论
为什么被折叠?



