python之异步编程

本文介绍了Python异步编程的概念和特点,重点讲解了asyncio模块中的event loops、coroutines和futures。通过async和await关键字将同步代码转换为异步,以实现更高效的并发执行。此外,还探讨了如何使用多线程克服异步任务的限制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、异步编程概述

异步编程是一种并发编程的模式,其关注点是通过调度不同任务之间的执行和等待时间,通过减少处理器的闲置时间来达到减少整个程序的执行时间;异步编程跟同步编程模型最大的不同就是其任务的切换,当遇到一个需要等待长时间执行的任务的时候,我们可以切换到其他的任务执行;

与多线程和多进程编程模型相比,异步编程只是在同一个线程之内的的任务调度,无法充分利用多核CPU的优势,所以特别适合IO阻塞性任务;

python版本 3.9.5

二、python的异步框架模型

python提供了asyncio模块来支持异步编程,其中涉及到coroutines、event loops、futures三个重要概念;

event loops主要负责跟踪和调度所有异步任务,编排具体的某个时间点执行的任务;

coroutines是对具体执行任务的封装,是一个可以在执行中暂停并切换到event loops执行流程的特殊类型的函数;其一般还需要创建task才能被event loops调度;

futures负责承载coroutines的执行结果,其随着任务在event loops中的初始化而创建,并随着任务的执行来记录任务的执行状态;

异步编程框架的整个执行过程涉及三者的紧密协作;

首先event loops启动之后,会从任务队列获取第一个要执行的coroutine,并随之创建对应task和future;

然后随着task的执行,当遇到coroutine内部需要切换任务的地方,task的执行就会暂停并释放执行线程给event loop,event loop接着会获取下一个待执行的coroutine,并进行相关的初始化之后࿰

Python 爬虫异步框架是一种用于编写并发网络爬虫的工具。它的主要目的是提高爬取效率,使程序可以同时处理多个网络请求。 在传统的爬虫框架中,每个请求都会阻塞程序的执行,直到请求返回数据才能继续处理下一个请求。这种串行处理方式往往导致爬取速度很慢,尤其是当需要处理大量的请求时。而异步框架通过利用非阻塞IO和事件循环机制,使得程序可以在等待一个请求返回时继续处理其他请求,从而提高爬取效率。 Python 爬虫异步框架的核心是事件循环(Event Loop)。它会持续监听网络请求的返回,并将已返回的请求交给相应的回调函数处理。这种回调函数的方式避免了阻塞,使得程序能够同时处理多个请求。 另外,异步框架还通常会提供一些高级功能,如连接池和任务调度。连接池可以复用连接,避免频繁地建立和关闭连接,提高爬取效率。任务调度可以管理和调度爬取任务,使得程序更加灵活和可扩展。 当前比较流行的Python爬虫异步框架有asyncio和aiohttp。asyncio是Python标准库提供的异步框架,它基于协程(Coroutine)和事件循环实现。aiohttp是一个基于asyncio的高性能HTTP客户端/服务器库,它提供了简洁的API,方便进行网络请求的处理。 总之,Python爬虫异步框架是一种高效的工具,通过充分利用异步和事件循环机制,提高了爬取效率,使得程序可以同时处理多个网络请求。它在大规模爬取和处理海量数据时表现出色,对于提升爬虫的速度和稳定性具有重要意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值