基于TensorFlow 实战案例:气温预测(附 Python 完整代码和数据集)


各位同学好,今天和大家分享一下TensorFlow2.0深度学习中的一个小案例。

案例内容:现有348个气温样本数据,每个样本有8项特征值和1项目标值,进行回归预测,构建神经网络模型。完整代码及数据,文末获取,喜欢记得收藏、点赞。

1、数据获取

导入所需要的库文件,获取气温数据

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
# 使用keras建模方法
from tensorflow.keras import layers
import warnings
warnings.filterwarnings('ignore')

#(1)数据获取
filepath = 'C:\\...\\temps.csv'
features = pd.read_csv(filepath)

temp_2代表前天的最高温度,temp_1代表昨天的最高温度,预测目标值为actual

2、数据可视化

我们绘制日期-温度曲线,首先需要将特征year、month、day组合在一起,拼接成一个字符串,再转变成一个datetime类型的数据。

# 处理时间数据,将年月日组合在一起
import datetime
# 获取年月日数据
years = features['year']
months = features['month']
days = features['day']

# 将年月日拼接在一起--字符串类型
dates = []  # 用于存放组合后的日期
for year,month,day in zip(years,months,days):
    date = str(year)+'-'+str(month)+'-'+str(day)  #年月日之间用'-'向连接
    dates.append(date)

# 转变成datetime格式
times = []
for date in dates:
    time = datetime.datetime.strptime(date,'%Y-%m-%d')
    times.append(time)
# 看一下前5行
times[:5]

处理好了x轴的数据,我们现在来对几个特征绘制曲线

# 可视化,对各个特征绘图
# 指定绘图风格
plt.style.use('fivethirtyeight')
# 设置画布,2行2列的画图窗口,第一行画ax1和ax2,第二行画ax3和ax4
fig,((ax1,ax2),(ax3,ax4)) = plt.subplots(2,2,figsize=(20,10))

# ==1== actual特征列
ax1.plot(times,features['actual'])
# 设置x轴y轴标签和title标题
ax1.set_xlabel('');ax1.set_ylabel('Temperature');ax1.set_title('actual temp')
# ==2== 前一天的温度
ax2.plot(times,features['temp_1'])
# 设置x轴y轴标签和title标题
ax2.set_xlabel('');ax2.set_ylabel('Temperature');ax2.set_title('temp_1')
# ==3== 前2天的温度
ax3.plot(times,features['temp_2'])
# 设置x轴y轴标签和title标题
ax3.set_xlabel('Date');ax3.set_ylabel('Temperature');ax3.set_title('temp_2')
# ==4== friend
ax4.plot(times,features['friend'])
# 设置x轴y轴标签和title标题
ax4.set_xlabel('Date');ax4.set_ylabel('Temperature');ax4.set_title('friend')
# 轻量化布局调整绘图
plt.tight_layout(pad=2)

3、特征处理

首先我们需要划分特征值和目标值。在原数据中提取特征值和目标值,'actual’存放的是当日最高温度。

# 获取目标值y,从Series类型变成数组类型
targets = np.array(features['actual'])
# 获取特征值x,即在原数据中去掉目标值列,默认删除行,需要指定轴axis=1指向列
features = features.drop('axtual',axis=1)
# 把features从DateFrame变成数组类型
features = np.array(features)

由于特征值中存在字符串类型的数据,'week’列都是字符串,因此我们需要对特征值进行one-hot编码将字符串类型转变成数值类型

# week列是字符串,重新编码,变成数值型
features = pd.get_dummies(features)

处理完字符串数据以后,所有数据变成数值型。为防止由于数据单位不一,跨度大等问题导致的模型准确度不高的问题,对数值型数据进行标准化处理

# 导入标准化方法库
from sklearn import preprocessing
input_features = preprocessing.StandardScaler().fit_transform(features)

到此,对原始数据的处理结束,接下来构建神经网络模型。

4、构建网络模型

我们使用keras建模方法,常用参数如下:

activation: 激活函数,一般选relu

kernel_initializer, bias_initializer: 权重与偏置参数的初始化方法,有时候不收敛换个初始化方法就好了

kernel_regularizer, bias_regularizer: 权重与偏置的正则化

inputs: 输入

units: 神经元个数

所有参数设置方法的参考:Module: tf | TensorFlow Core v2.7.0 (google.cn)

(1)网络搭建

首先我们导入keras序列模型,tf.keras.Sequential(),按顺序一层一层添加网络层。layers代表不同层次的实现。

每个隐含层的神经元个数是随意改变的,大家可以自己去试,我们这里需要预测最高温度,因此输出值层只需要一个神经元。权重初始化方法各不相同,大家可以在上面那个文档中寻找合适的。

# 构建层次
model = tf.keras.Sequential()
# 隐含层1设置16层,权重初始化方法设置为随机高斯分布,加入正则化惩罚项
model.add(layers.Dense(16,kernel_initializer='random_normal',kernel_regularizer=tf.keras.regularizers.l2(0.01)))
# 隐含层2设置32层
model.add(layers.Dense(32,kernel_initializer='random_normal',kernel_regularizer=tf.keras.regularizers.l2(0.01)))
# 输出层设置为1,即输出一个预测结果
model.add(layers.Dense(1,kernel_initializer='random_normal',kernel_regularizer=tf.keras.regularizers.l2(0.01)))

(2)优化器和损失函数

接下来需要指定优化器和损失函数 model.compile(),在这里优化器使用梯度下降法,损失函数使用MSE均方误差。大家要根据自己的任务来选择,损失函数的选择对网络的结果影响很大。

# 优化器和损失函数
model.compile(optimizer=tf.keras.optimizers.SGD(0.001),loss='mean_squared_error')

(3)网络训练

制定完成后就可以开始训练了,网络训练函数 model.fit()。输入特征值input_features,目标值targets,validation_split=0.25指测试集在输入数据中抽取0.25用于测试,epochs指迭代次数100次,每一次迭代128个样本。

# ==3== 网络训练
model.fit(input_features,targets,validation_split=0.25,epochs=100,batch_size=128)

返回训练损失和测试损失,可看到迭代100次后,训练集的损失24.675和测试集的损失29.01相差不大,证明没有出现过拟合现象 。如果出现训练集的损失很小,测试集的损失很大,说明存在过拟合,需要调整参数。

(4)网络模型结构

我们也可以看一下我们构建的网络模型结构,model.summary(),隐含层1有240个参数,它是怎么计算的呢?输入层的shape为[348,14],14个特征;第一个全连接层W的shape为[14,16],16代表隐含层1的特征个数,偏置参数b的shape为[1,16],y=Wx+b。因此参数个数为14*16+16=240。

(5)预测结果

网络模型预测函数 model.predict()

# ==5== 预测模型结果
predict = model.predict(input_features)

我们这里对有所的样本都预测一下,来比较预测结果和实际结果的差异

5、结果展示

简单绘制一个散点图来看一下,可以看出预测结果和实际结果大体保持相同,稍微存在偏差。感兴趣的同学可以进一步进行特征工程、调节参数,来达到更好的效果。

# 真实值,蓝色实现
fig = plt.figure(figsize=(10,5))
axes = fig.add_subplot(111)
axes.plot(dates,targets,'bo',label='actual')
# 预测值,红色散点
axes.plot(dates,predict,'ro',label='predict')
axes.set_xticks(dates[::50])
axes.set_xticklabels(dates[::50],rotation=45)

plt.legend()
plt.show()

完整代码及数据

完整代码及数据已放置后台,按关键字回复即可

想加入技术交流,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友

方式①、添加微信号:dkl88191,备注:来自CSDN+温度
方式②、微信搜索公众号:Python学习与数据挖掘,后台回复:温度

  • 20
    点赞
  • 197
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
TensorFlow 是谷歌的第二代机器学习系统,按照谷歌所说,在某些基准测试中,TensorFlow的表现比第一代的DistBelief快了2倍。 TensorFlow 内建深度学习的扩展支持,任何能够用计算流图形来表达的计算,都可以使用TensorFlowTensorFlows是人工智能AI领域的一个重要软件工具,是谷歌开发的开源软件(即免费的)。 人工智能领域分为三个方面,即基础层、技术层和应用层;而TensorFlow就是技术层中的学习框架。所谓学习框架,你可以用它来处理大量数据,快速建立数学模型,这些模型可以完成智能功能,例如自动识别一个图片里面的人物是否是范冰冰,当你百度范冰冰时,这个模型就可以识别并呈现范冰冰的图片;TensorFlow就好像一个功能强大的机床,它可以帮助制造出不同的产品(即数学模型)。现在所有行业都有人工智能领域的覆盖,可见人工智能在未来的发展趋势,必然需要大批人才,掌握人工智能势在必行。本课程以实战驱动方式结合基础讲解使大家深入理解Tensorflow、Numpy、Pandas、RNN、LSTM、Keras等知识,能够运用到真实项目中去,未来也是人工智能的时代,有巨大的机遇,早点掌握这些知识,为跳巢涨薪做准备。最后的项目是一个真实可用的项目,预测准确率非常高,商业价值不言而喻。大家可以根据预测的股票走势做参考,来进行投资。也可以基于我的模型基础上进一步完善和优化,所以价值是非常高的。本课程由浅到深讲解,分为简单股票模型和复杂股票模型,模型的效果也是非常好,最终的效果如下:1、简单模型效果: 2、复杂模型效果:  本课程包含的技术:Anaconda PyCharmTensorflowNumpyMatplotlibPandasSklearnKerasRNNLSTM等   
在使用Python进行气温预测时,可以使用ARIMA模型来进行预测。ARIMA模型是一种常用的时间序列预测模型,可以根据历史数据的趋势和周期性来预测未来的数据。以下是一个使用Python实现气温预测的示例代码: import requests from scipy.stats import zscore from statsmodels.tsa.arima.model import ARIMA # 设置http代理 proxy = { "http": "http://username:password@t.16yun.cn:30001", "https": "http://username:password@t.16yun.cn:30001" } # 发送请求获取天气数据 response = requests.get("https://api.weather.com", proxies=proxy) # 解析天气数据 data = response.json() # 进行异常检测 def detect_abnormal(data): # 使用z-score方法进行异常检测 z_scores = zscore(data) threshold = 3 # 设置异常阈值 abnormal_data = [d for d, z in zip(data, z_scores) if abs(z) > threshold] return abnormal_data abnormal_data = detect_abnormal(data) # 进行气温预测 def forecast_temperature(data): # 使用ARIMA模型进行气温预测 model = ARIMA(data, order=(1, 0, 0)) # 设置ARIMA模型的阶数 model_fit = model.fit() forecast = model_fit.forecast(steps=7) # 预测未来7天的气温 return forecast forecast = forecast_temperature(data) # 输出结果 print("异常气温数据:", abnormal_data) print("气温预测结果:", forecast) 通过以上代码,我们可以使用Python来进行气温预测。首先,我们设置了一个http代理,以便在请求天气数据时使用代理服务器。然后,我们发送请求获取天气数据,并解析返回的JSON数据。接下来,我们使用detect_abnormal函数进行异常检测,并使用forecast_temperature函数进行气温预测。最后,我们输出结果。通过使用Python进行气温预测,我们可以更好地了解和应对气温异常情况,并提前做好相应的准备和措施预防。同时,Python提供了丰富的数据分析预测库,使我们能够更轻松地实现这些功能。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [使用Python进行天气异常检测和预测](https://blog.csdn.net/Z_suger7/article/details/131663878)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [基于TensorFlow 实战案例气温预测 Python 完整代码数据集)](https://blog.csdn.net/m0_59596937/article/details/127193340)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值