一、引言
在机器学习和数据挖掘领域,朴素贝叶斯算法是一种经典且广泛应用的分类算法。它基于贝叶斯定理和特征条件独立假设,以其简单高效的特点在众多领域中展现出了出色的分类性能。从文本分类到疾病诊断,从垃圾邮件过滤到情感分析,朴素贝叶斯算法都有着广泛的应用,成为了解决分类问题的有力工具。
二、朴素贝叶斯算法原理
(一)贝叶斯定理
贝叶斯定理是整个算法的理论基础,其公式表示为:

其中,P(A|B)是在事件B发生的条件下事件A发生的概率(后验概率),P(B|A)是在事件A发生的条件下事件B发生的概率,P(A)和P(B)分别是事件A和事件B的先验概率。
(二)朴素贝叶斯算法的假设
朴素贝叶斯算法基于一个重要的假设 —— 特征条件独立假设。即假设给定类别y的情况下,各个特征x1,x2,...,xn之间相互独立。基于这个假设,对于一个具有n个特征的样本x=(x1,x2,...,xn),其属于类别的概率可以表示为:

订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



