HDU OJ 5-1007 Common Subsequence C语言实现(CHATGPT)

该代码实现了一个计算两个字符串最长公共子序列(LCS)的动态规划算法,具有O(mn)的时间复杂度和空间复杂度。输入为两个字符串,输出为LCS的长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description

A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

Sample Input

abcfbc abfcab programming contest abcd mnp

Sample Output

4 2 0

这段代码实现了最长公共子序列(LCS)问题的动态规划解法。在输入两个字符串后,它将计算它们的LCS并输出其长度。这个算法的时间复杂度为O(mn),其中m和n分别是两个字符串的长度。这个算法的空间复杂度也是O(mn),因为它使用了一个二维数组来存储中间结果。这个算法的正确性可以通过数学归纳法证明。

#include <stdio.h>
#include <string.h>

#define MAX_LEN 1000

int dp[MAX_LEN + 1][MAX_LEN + 1];

int max(int a, int b) {
    return a > b ? a : b;
}

int main() {
	int i,j;
    char X[MAX_LEN + 1], Y[MAX_LEN + 1];
    while (scanf("%s %s", X + 1, Y + 1) == 2) {
        int m = strlen(X + 1), n = strlen(Y + 1);
        memset(dp, 0, sizeof(dp));
        for (i = 1; i <= m; i++) {
            for (j = 1; j <= n; j++) {
                if (X[i] == Y[j]) {
                    dp[i][j] = dp[i-1][j-1] + 1;
                } else {
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
                }
            }
        }
        printf("%d\n", dp[m][n]);
    }
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值