2024年最全数字内容安全期末复习知识点(3),2024年最新统统给你解决

给大家的福利

零基础入门

对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。

同时每个成长路线对应的板块都有配套的视频提供:

在这里插入图片描述

因篇幅有限,仅展示部分资料

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以点击这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

总的来说,与空间域水印方法比较,变化域水印方法具有如下优点:

①在变换域嵌入的水印信号能量可以散布到空间域的所有位置,有利于保证水印的不可察觉性。

②在变换域中人类视觉系统和听觉系统的某些特性(如频率掩蔽效应)可以更方便地结合到水印编码过程中。

③变换域的方法可与数据压缩标准相兼容,从而实现在压缩域内的水印算法,同时,也能抵抗相应的有损压缩。

缺点:

①隐藏信息比空间域少,计算量比空间域大

②在正变换和反变换计算过程中,会进行格式转换,导致信息的损失,这相当于一次微型攻击,对于大量数据隐藏很不友好

8.数字水印的性能评价

①鲁棒性:D k ( p ( E k ( c , m , k ) , k ) = D k ( E k ( c , m , k ) , k ) = m ,其中p是一类映射C->C(C是载体信息), 相当于做了一些非恶意修改

②不可感知性: 要求嵌入信息后, 宿主数据质量没有明显下降, 凭借人类感知系统不能发现其中嵌入了信息. 对于不可感知性的评价: 主观测试(测试人员进行观察), 客观度量(差分失真度量, 相关性失真度量)

③容量: 水印容量是水印系统信道的最大可靠传输率

9,信息隐藏存在的原因

①多媒体信息存在很大的冗余性,未压缩的多媒体信息的编码效率很低,所以把机密信息嵌入多媒体信息是可行的,不会影响多媒体信息本身的传送和使用

②人类的听觉和视觉系统都有一定的掩蔽效应,可以充分利用这种掩蔽效应将信息隐藏不被察觉。

二、文本内容安全

1.简述自然文本的分布特征及常见的自然语言处理技术

2.简述文本数字水印常见算法

基于文档结构的水印方法

①行间距编码:行间距编码利用文本的行间距携带水印信息,一般在文本中每隔一行轮流地嵌入水印信息,嵌入信息行的相邻上下2行位置不动,作为参照,需嵌入信息的行根据水印数据的比特流进行轻微的上移和下移,在移动过的一行中编码一个信息比特。

②字间距编码:字间距编码方法是在编码过程中,将文本某行中的一个单词水平左移或右移来嵌入水印信息,而与其相邻的单词并不移动,作为解码过程中的位置参考

③特征编码:特征编码通过改变文档中某个字母的某一特征来嵌入标记,这些特征可以是各种各样的:字体,颜色,大小,下划线,笔画高度和方向

④不可见编码:基于不可见的水印方法是唯一适用于非格式化文档的基于文档结构的方法,一般将信息编码隐藏在字处理系统的断行处。行尾是否有空格在视觉上难以区分,提取时可通过不可见编码的有无及数目进行解码

基于自然语言文本水印方法

①基于句法结构的自然语言文本水印算法

该方法主要是对句子的句法结构进行转换以嵌入水印,其中公认的,最常用的变换方式有以下4种:移动附加语位置,加入形式主语,主动变被动,添加透明短语

②基于语义的自然语言文本水印算法

主要是在基于对句子深层的理解的基础上对句子进行变换,以达到在文本中加入水印的方法

3.简述文本隐写术和水印技术的异同

4.什么是文本过滤和文本分类?两者之间有什么联系?

文本过滤是自动归类,文本分类是自动聚类;但二者都是为了保护文本内容安全。

5.谈谈你对文本隐写分析的理解

文本隐写分析是对文本隐写技术进行检测,主要包括针对两种隐写方法的监测,也有一定的缺点。

6.如何实现对文本内容的加密?

7.基于文档结构的各种文本水印方法的优缺点

①行间距编码方法的容量最小,其鲁棒性相对最好

②字间距编码水印方法的不可见性好于行间距编码,但鲁棒性减弱,相应增加了提取的复杂度

③特征编码法在水印容量方面有明显的优势,有着非常好的不可见性,也很难被攻击者去除,但其受噪声影响大,鲁棒性不佳,在提取时较前2种方法更加复杂和困难

④空格编码不易引起词句的改变和读者的注意,但是容量太小,而且有的编辑会自动删除多余的空格。

值得注意的是这4种方法都只是停留在文本的表层。由于它们都是空间域的方法,安全性主要靠空间格式的隐蔽性来保证,无法抵抗对于文本结构和格式的攻击,简单的重录攻击就能使之失效,因此这些水印方案普遍存在抗攻击性不强,鲁棒性较差的缺点。

8.文本自动分词算法–基于理解的分词方法

现有的分词算法可分为三大类,即基于字符串匹配的分词算法,基于理解的分词方法和基于统计的分词方法

基于理解的分词方法:从文本d中逐句提取,对于每个句子s1从左向右以MaxLen为界选出候选字串w,如果w在词典中,处理下一个长为MaxLen的候选字段,否则将w最右边的一个字去掉,继续与词典比较;s1切分完之后,构成词的字符串或者此时w已经成为单字,用分隔符隔开输出给s2。从s1中减去w,继续处理后续的字串。s1处理结束后,取下中的下一个句子赋给s1,重复前述步骤,直到整篇文章d都切分完毕。

9.文本表示模型–向量空间模型VSM

文本表示模型有布尔模型,向量空间模型,概率模型,潜在语义索引模型和特征项粒度。

向量空间模型:向量空间模型建立在线性代数理论之上,基于这种模型每篇文档都形式化为高维特征空间中的一个向量,对应特征空间中的一个点,向量的每一维表示一个特征,这个特征可以是一个字,一个词,一个短语或某个复杂的结构。

在一个文档d中,每个特征项t都被赋予一个权重W,以表示这个特征项在该文档中的重要程度。权重都是以特征项的频率为基础进行计算的,经典的权重定义公式是TF*IDF,其中TF为词频,表示t在文档d中出现的次数;IDF为特征项的文档频率,将其定义为IDF=log(N/n),N表示文档集合中所有的文档数目,n表示整个文档集合中出现t的文档数。TF反映了特征项在文档内部的局部分布情况,IDF反映了特征项在整个文档集中的全局分布情况。TF*IDF公式可以反映特征项在文档表达中的重要程度

文档表示为特征向量后,文本之间的语句距离或者语义相似度就可以通过空间中的这两个向量的集合关系度量。在向量空间中,通常用空间中的两个向量的夹角余弦值来度量文档之间的语义相似度,夹角余弦值越大,两个向量在空间中的夹角就越小表示它们的语义距离就越小,两个文档就越相似。

向量空间模型的优点在于:将文本简化为特征项以及权重集合的向量表示,从而把文本的处理转换为向量空间上的向量运算,使得问题的复杂度大为降低,提高了文本处理的速度。它的缺点也很明显,该模型假设文本向量中的特征词是相互独立的,这一假设在自然语言文本中是不成立的,因此对计算结果的可靠性造成一定的影响。此外,将复杂的语义关系归结为简单的向量结构,丢失了许多有价值的线索。

10.文本分类算法–KNN分类算法

常用文本分类算法有KNN,决策树,SVM,Rocchio分类算法

KNN分类算法又称为K近邻算法。该算法的思想是根据传统的向量空间模型,文本内容被形式化为特征空间中的加权特征向量。对于一个测试文本,计算它与训练样本集中每个文本的相似度,找出K个最相似的文本,根据加权距离来判断测试文本所属的类别。具体算法步骤如下:

①对于一个测试文本,根据特征词形成测试文本向量

②计算该测试文本与训练集中每个文本的文本相似度

③按照文本相似度,在训练文本集中选出与测试文本最相似的K个文本

④在测试文本的K个近邻中,依次计算每类的权重

⑤比较类的权重,将文本分到属于权重最大的那个类别中。

KNN方法基于类比学习,是一种非参数的分类技术,在基于统计的模式识别中非常有效,对于未知和非正态分布可以取得较高的分类准确率,具有鲁棒性,概念清晰。但在文本分类中,KNN方法也存在不足,如KNN算法是懒散的分类算法,其时空开销大,计算相似度时,特征向量维数高,没有考虑特征间的关联关系;样本距离计算时各维权值相同,使得特征向量之间的距离计算不够准确,影响分类精度。

第4章 图像安全

1.图像加密–基于变换域的图像加密

图像加密的典型加密算法:基于矩阵变换及像素置换的图像加密,基于现代密码体制的图像加密,基于混沌的图像加密,基于秘密分割与秘密共享的图像加密,基于变换域的图像加密,基于SCAN语言的图像加密。

基于频域的图像加密原理是先对图像进行变换(DCT,DWT),得到变换域系数,通过某种变换规则,改变变换域系数的位置或值,对变换后数据进行逆变换,得到加密图像。

基于小波变换的图像加密技术,加密过程如图所示。

(1)加密过程

输入:原图像,载体图像1,参数1,参数2,参数3等

输出:加密图像,载体图像2(包含密钥)

步骤1,首先对于大小为M×N的任意图像,其大小可能不是8×8整数倍,这时要对原图像进行边界扩充(填0)

,使其大小为8×8的整数倍,其方法是在图像的边界填充0(黑色),再对图像进行连续三次的小波分解。

步骤2,将小波系数分为四组,即低频LL3,水平区域组(HL3,HL2,HL1),垂直区域组(LH3,LH2,LH1),和对角线组(HH3,HH2,HH1),分别编号为组1,组2,组3,组4。分组完成后,按照小波零树扫描方式将每组数据变为一维数组

步骤3,生成混沌密钥模板矩阵。首先根据输入参数,选择混沌系统,并给定初始值,生成密钥模板,利用该密钥模板,分别对每组小波系数进行相应调整。

步骤4,根据输入参数选择置乱方法,如选择Arnold变换与FASS曲线相结合,然后分别分别对小波系数进行分块和全局范围内的置乱处理,FASS方块大小和Arnold变换次数在参数中给出

步骤5,根据输入参数,可以再进行步骤2到4的过程对小波变换再次加密处理。否则将数据输入图像量化编码系统,进行图像数据的量化编码,或通过小波逆变换输出加密图像,同时输出解密密钥和伪装密钥,形成密钥包,它包含了所有加密信息。

步骤6,将输出的密钥包隐藏在载体图像中,提供给终端用户,便于解密时提取密钥数据。

(2)解密过程

输入:加密图像,载体图像

输出:解密图像

首先对输入的载体图像进行分类处理,识别出加密图像,载体图像和一般普通图像,然后通过运行特定的去隐藏程序,从载体图像中取出密钥包数据,同时进行用户端的解密认证程序,确认密钥包的有效性。密钥包有效后,提取解密密钥。将该密钥输入混沌解密系统,系统自动分析密钥,提取解密特征信息,得到加密参数,进行加密过程的逆过程,就 可以实现图像解密,输出原图。

2.图像水印–变换域技术

根据嵌入位置可以将主要算法大致归为格式,空间域,变换域,扩展频谱

通过小波系数进行编码的方法实现数字水印算法–邻近值算法。

(1)水印加载过程

①对载体图像C做一级小波变换

②以密钥k为种子对水印数据W(i,j)随机置乱,记置乱后的水印图像数据为W1(i,j)

③根据W1(i,j)的数据,利用邻近值算法,对载体图形的一级小波变换的HL1进行修改,嵌入水印信息

④对修改后的小波变换域 系数做一级小波逆变换,恢复水印图像,记作Cw

(2)水印的提取过程

①对水印图像Cw做一级小波变化

②利用邻近值算法,从载体图像一级小波变换的HL1系数中提取出已经置乱的水印信息W1(i,j)

③对提取出的置乱水印信息W1(i,j),以密钥K为种子对数据W1(i,j)进行置乱恢复,提取出嵌入水印Wt。

第5章 音频安全

1.音频隐写–回声隐藏法

音频隐写算法可以分四类:最低有效位方法LSB,回声隐藏法,扩频隐藏法,变换域法

回声隐藏法是通过引入回声的方法将秘密信息嵌入到音频载体中。该方法利用了人类听觉系统中的另一个特性:音频信息在时域的后屏蔽作用,即弱信号在强信号消失之后变得无法听见。弱信号可以在强信号消失之后的50到200ms而不被人耳察觉。因此可通过改变回声的初始幅度,衰减速度和时间延迟等嵌入秘密信息。在不同的两个时间延迟上加入回声以实现二进制秘密信息的嵌入。

回声隐藏通过选择不同的延迟参数d隐藏不同的比特0,1,假设d=d0表示嵌入比特0,d=d1表示嵌入比特1。先将原始音频信号分成若干个大小相同的数据段,每个数据段嵌入1bit信息,为了实现每个数据段嵌入不同的比特信息,需要用到信号混合器,如果某个分段要嵌入1,那么该分段的所有样本点,0混合器为1,1混合器为0,否则相反。

优点:滤波,重采样,有损压缩等不敏感,透明性高

缺点:容易被第三方用回声检测的方法检测出来,提取正确率不高

2,音频时域信号分析特点

①表示音频信号比较直观,物理意义明确②实现起来比较简单,运算少③可以得到音频的一些重要参数④只使用示波器等通用设备,使用较为简单等

3,音频频域信号分析的主要作用

实验表明,人类感知语音的过程和语音的频谱特性关系密切,人的听觉对语音的频谱特性更敏感。语音的频谱具有非常明显的语言声学意义,能反映一些非常重要的语音特征。

第6章 视频安全

1,视频加密–选择性加密算法

直接加密:在压缩编码之前对视频原始数据进行加密和视频压缩编码之后对视频压缩码流进行加密。

选择性加密算法,就是在图像和视频编码过程中,利用视频数据的特性,针对压缩后的码流,选择一部分关键数据进行加密。

选择性加密算法通常要考虑视频的编码过程,选择编码过程中对人眼视觉特性较敏感的部分数据进行加密。大部分与编码过程相结合的加密算法选择的加密位置包括DCT系数(位置1),量化后的DCT系数(位置2)和熵编码后的码流数据(位置3)。

①针对DCT系数加密

对DCT符号进行加密。将DCT系数的符号进行二进制编码,即正数用0表示,负数用1表示,这种对DCT系数符号进行加密的算法称为SE算法,这是将符号拼成比特流或数据段,然后使用随机产生的密钥流与其作按位的异或运算,将加密后的符号相应地赋回原数据中。

②针对量化后的DCT系数加密

实时视频加密算法RVEA的基本思想是量化后DCT系数的一部分被选择加密以减轻运算负担。RVEA是视频加密算法VEA和修改的视频加密算法MVEA的扩展版本。VEA是加密所有I帧DCT系数的符号。MVEA是加密P帧和B帧运动矢量的符号。VEA和MVEA都无法抵抗已知明文攻击。因为当攻击者获得了原始和加密的视频,则可以轻易地获得密钥。为了克服VEA和MVEA在安全性上的弱点,提出了RVEA算法,该算法采用传统的加密算法DES取代异或操作。和VEA和MVEA不同的是,RVEA只是选择每个宏块至多64个符号进行加密以减少加密负担。

③针对熵编码码流的加密

MHT:在视频编码过程中使用多统计模型取代单统计模型将熵编码码流转换成加密密文,该算法使用特殊的哈夫曼树及其在熵编码中的使用顺序作为密钥进行保存。如果没有获取到特殊的哈夫曼树及其使用顺序,正确解码是不可能的

step1,选择m个不同的哈夫曼表,并从0到m-1进行标记这些哈夫曼表

step2,产生一个随机矢量P=(p0,P1…pm-1),pi表示k比特整数,其大小从0到m-1,并且k等于log2m

step3,使用表pi mod n对第i个数据码流进行编码

重点:找个大量的最优哈夫曼表,可以达到标准压缩技术采用多哈夫曼表压缩的效率

2,视频隐写和水印–基于自适应隐写算法

视频隐写技术的主要算法:基于替代的视频隐写算法,基于变换域的视频隐写算法,基于自适应的视频隐写算法

自适应的隐写技术是一类比较新的嵌入技术。该技术通常在嵌入秘密信息之前先研究视频载体的统计特性。为了提高隐写视频的质量,通常根据某个准则对视频载体进行修改

LSB替代算法就是一种自适应隐写的算法。该算法首先将视频的运动目标和背景进行分割,将运动目标作为隐藏的秘密信息,采用LSB算法嵌入到背景当中,得到隐写的视频。

视频水印:基于原始视频的水印算法,基于视频编码的水印算法,基于压缩视频的水印算法

2,视频隐写分析的特点

秘密信息的嵌入虽然不会明显改变视频序列的感观效果,但在一定程度上无可避免地造成原始视频数据的某些统计特征发生变化

与静止图像信息隐藏技术相比,视频信息隐藏技术有以下不同之处。

①大的隐藏容量和相对小的嵌入比率

由于视频资源自身的数据量要远远大于一副静止图像的数据量,通常它所体现出来的绝对隐藏容量也很大。但实际上,这种绝对大的隐藏容量往往使人忽略其相对小的嵌入比率,这是由于视频资源庞大的数据量必须引入高压缩 比的视频压缩编码技术形成压缩码流才能够进行有效存储,而这些压缩编码技术在最大限度消除视频序列图像中的冗余信息的同时,实际上也压缩隐藏信息的生存空间,从而导致视频信息隐藏的嵌入率远远小于静止图像隐藏技术。这种很小的嵌入率的特点使得嵌入信息以极低的密度分散在较大的视频码流中,也进一步增强了视频信息隐藏分析的难度

②对视频编解码系统的强依赖性

较为成熟的视频信息隐藏算法往往对视频编码系统具有较高的依赖性,甚至完全融入编解码系统中。这是由于视频资源必须经过有损压缩编码系统,并会造成部分信息的损失。如果隐藏算法游离于这些视频编码系统之外,那么视频压缩编码系统就成为这些隐藏系统必须能够抵抗的一种特殊攻击模式。

③序列图像时间域相关特性的利用

还有兄弟不知道网络安全面试可以提前刷题吗?费时一周整理的160+网络安全面试题,金九银十,做网络安全面试里的显眼包!

王岚嵚工程师面试题(附答案),只能帮兄弟们到这儿了!如果你能答对70%,找一个安全工作,问题不大。

对于有1-3年工作经验,想要跳槽的朋友来说,也是很好的温习资料!

【完整版领取方式在文末!!】

93道网络安全面试题

内容实在太多,不一一截图了

黑客学习资源推荐

最后给大家分享一份全套的网络安全学习资料,给那些想学习 网络安全的小伙伴们一点帮助!

对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。

😝朋友们如果有需要的话,可以联系领取~

1️⃣零基础入门
① 学习路线

对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。

image

② 路线对应学习视频

同时每个成长路线对应的板块都有配套的视频提供:

image-20231025112050764

2️⃣视频配套工具&国内外网安书籍、文档
① 工具

② 视频

image1

③ 书籍

image2

资源较为敏感,未展示全面,需要的最下面获取

在这里插入图片描述在这里插入图片描述

② 简历模板

在这里插入图片描述

因篇幅有限,资料较为敏感仅展示部分资料,添加上方即可获取👆

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以点击这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值