CVPR 2022 优质论文分享
A ConvNet for the 2020s
论文:https://arxiv.org/abs/2201.0354
代码:https://github.com/facebookresearch/ConvNeXt

2020年以来,ViT一直是研究热点。ViT在图片分类上的性能超过卷积网络的性能,后续发展而来的各种变体将ViT发扬光大(如Swin-T,CSwin-T等),值得一提的是Swin-T中的滑窗操作类似于卷积操作,降低了运算复杂度,使得ViT可以被用做其他视觉任务的骨干网络,ViT变得更火了。本文探究卷积网络到底输在了哪里,卷积网络的极限在哪里。在本文中,作者逐渐向ResNet中增加结构(或使用trick)来提升卷积模型性能,最终将ImageNet top-1刷到了87.8%。作者认为本文所提出的网络结构是新一代(2020年代)的卷积网络(ConvNeXt),因此将文章命名为“2020年代的卷积网络”。
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding
论文
本文分享了CVPR 2022中两篇关于深度学习的研究论文。一篇探讨了如何提升卷积网络性能,提出新的网络结构ConvNeXt,使ImageNet top-1准确率达到87.8%。另一篇论文引入Transformer结构增强图像修复,解决了CNN的感受野限制和Transformer的大规模计算问题,实现了更好的结构恢复。
最低0.47元/天 解锁文章
2792

被折叠的 条评论
为什么被折叠?



