CVPR 2022 优质论文分享

本文分享了CVPR 2022中两篇关于深度学习的研究论文。一篇探讨了如何提升卷积网络性能,提出新的网络结构ConvNeXt,使ImageNet top-1准确率达到87.8%。另一篇论文引入Transformer结构增强图像修复,解决了CNN的感受野限制和Transformer的大规模计算问题,实现了更好的结构恢复。
摘要由CSDN通过智能技术生成

CVPR 2022 优质论文分享

A ConvNet for the 2020s

论文:https://arxiv.org/abs/2201.0354

代码:https://github.com/facebookresearch/ConvNeXt

2020年以来,ViT一直是研究热点。ViT在图片分类上的性能超过卷积网络的性能,后续发展而来的各种变体将ViT发扬光大(如Swin-T,CSwin-T等),值得一提的是Swin-T中的滑窗操作类似于卷积操作,降低了运算复杂度,使得ViT可以被用做其他视觉任务的骨干网络,ViT变得更火了。本文探究卷积网络到底输在了哪里,卷积网络的极限在哪里。在本文中,作者逐渐向ResNet中增加结构(或使用trick)来提升卷积模型性能,最终将ImageNet top-1刷到了87.8%。作者认为本文所提出的网络结构是新一代(2020年代)的卷积网络(ConvNeXt),因此将文章命名为“2020年代的卷积网络”。

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding

论文࿱

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值