简要叙述一下AdaBoost算法的主要过程:
AdaBoost为每个数据样本分配权重,权重符合概率分布,初始权重符合均匀分布,串行训练M个模型,依据每轮训练的模型的错误率(被误分类样本的权重之和)确定当前模型在最终模型中的权重,以及更新训练样本的权重,误分类样本权重升高,分类正确的样本权重降低。
下图的算法流程来自于《统计学习方法》。


下面通过具体的实例来理解AdaBoost算法的流程,例子来自于《统计学习方法》。

第一轮迭代:

此时得到的组合模型中只有一个
,此时
的分类结果就是最终模型的分类结果。第一轮迭代中6,7,8(6,7,8指的是x的值,不是指的序号)被误分类。此时得到的组合模型在训练数样本上的预测结果如下:
|
X |
y |
|
|
|
分类结果 |
|
0 |
1 |
0.4236 |
0.4236 |
1 |
正确 |
|
1 |
1 |
0.4236 |
0.4236 |
1 |
正确 |
|
2 |
1 |
0.4236 |
0.4236 |
1 |
正确 |
|
3 |
-1 |
-0.4236 |
-0.4236 |
-1 |
正确 |
|
4 |
-1 |
-0.4236 |
-0.4236 |
-1 |
正确 |
|
5 |
-1 |
-0.4236 |
-0.4236 |
-1 |
正确 |
|
6 |
1 |
-0.4236 |
-0.4236 |
-1 |
错误 |
|
7 |
1 |
-0.4236 |
-0.4236 |
-1 |
错误 |
|
8 |
1 |
-0.4236 |
-0.4236 |
-1 |
错误 |
|
9 |
-1 |
-0.4236 |
-0.4236 |
-1 |
正确 |
其中sign符号函数如下:
![]()
第二轮迭代:

第二轮迭代中3,4,5被误分类,此时得到的最终模型是前两轮模型的线性组合。那么在当前的组合条件下
的分类结果是怎样的?
|
X |
y |
|
|
|
|
分类结果 |
|
0 |
1 |
0.4236 |
0.6496 |
1.0732 |
1 |
正确 |
|
1 |
1 |
0.4236 |
0.6496 |
1.0732 |
1 |
正确 |
|
2 |
1 |
0.4236 |
0.6496 |
1.0732 |
1 |
正确 |
|
3 |
-1 |
-0.4236 |
0.6496 |
0.226 |
1 |
错误 |
|
4 |
-1 |
-0.4236 |
0.6496 |
0.226 |
1 |
错误 |
|
5 |
-1 |
-0.4236 |
0.6496 |
0.226 |
1 |
错误 |
|
6 |
1 |
-0.4236 |
0.6496 |
0.226 |
1 |
正确 |
|
7 |
1 |
-0.4236 |
0.6496 |
0.226 |
1 |
正确 |
|
8 |
1 |
-0.4236 |
0.6496 |
0.226 |
1 |
正确 |
|
9 |
-1 |
-0.4236 |
-0.6496 |
-1.0732 |
-1 |
正确 |
第三轮迭代:


第三轮迭代中0,1,2,9被误分类,此时得到的最终模型是前三轮模型的线性组合。那么在当前的组合条件下
的分类结果是怎样的?
经过三轮迭代之后,在训练集上的错误率为0。
nTrainPosData = 200;
nTrainNegData = 200;
nLevels = 200;
W = 19;
H = 19;
PTrainData = zeros(W, H, nTrainPosData);
NTrainData = zeros(W, H, nTrainNegData);
%% read train data
fileFolder = '.\Datasets\FACES\';
pfiles = dir(fullfile(strcat(fileFolder,'*.pgm')));
fileNames = {pfiles.name}'; %转换成细胞数组
aa = 1:length(pfiles); %这段程序还没有看懂
a = randperm(length(aa));
trainPosPerm = aa(a(1:nTrainPosData));
for i=1:size(PTrainData,3)
PTrainData(:,:,i) =imread(strcat(fileFolder,fileNames{i}));
end
fileFolder = '.\Datasets\FACES\';
nfiles = dir(fullfile(strcat(fileFolder,'*.pgm')));
fileNames = {nfiles.name}'; %转换成细胞数组
aa = 1:length(nfiles); %这段程序还没有看懂
a = randperm(length(aa));
trainNegPerm = aa(a(1:nTrainNegData));
for i=1:size(NTrainData,3)
NTrainData(:,:,i) =imread(strcat(fileFolder,fileNames{i}));
end
%% read test data
testPosPerm = setdiff(1:length(pfiles), trainPosPerm);
testNegPerm = setdiff(1:length(nfiles), trainNegPerm);
PTestData = zeros(W, H, length(testPosPerm));
NTestData = zeros(W, H, length(testNegPerm));
fileFolder = '.\Datasets\FACES\';
pfiles = dir(fullfile(strcat(fileFolder,'*.pgm')));
fileNames = {pfiles.name}'; %转换成细胞数组
% for i=1:size(PTestData,3)
for i=1:200
PTestData(:,:,i) =imread(strcat(fileFolder,fileNames{i}));
end
fileFolder = '.\Datasets\FACES\';
nfiles = dir(fullfile(strcat(fileFolder,'*.pgm')));
fileNames = {nfiles.name}'; %转换成细胞数组
% for i=1:size(NTestData,3)
for i=1:200
NTestData(:,:,i) =imread(strcat(fileFolder,fileNames{i}));
end
%%
Cparams = Train(PTrainData, NTrainData, PTestData, NTestData, nLevels);
save('.\Cparams.mat', 'Cparams');


本文详细解析了AdaBoost算法的过程,包括如何初始化权重、根据错误率调整模型权重和样本权重,并通过实例演示了每轮迭代中模型的更新。核心步骤涉及权重分配、模型组合及误分类样本的动态调整。
7199

被折叠的 条评论
为什么被折叠?



