在介绍机器学习之前,首先我来给大家分享一篇划时代的论文,2006年,Geoffrey Hinton等人发表了一篇论文,展示了如何训练能够高精度(>98%)识别手写数字的深度神经网络。他们将这种技术称为“深度学习”。
在当时,深度神经网络的训练被普遍认为是不可能的。这篇论文重新激起了科学界的兴趣。不久之后,许多新的论文展示了深度学习不仅是可行的,而且能取得令人瞩目的成就。大数据、高性能硬件和新的算法,一同推动机器学习快速发展。

那么,什么是机器学习呢?
1959年Arthur Samuel将它定义为“机器学习研究如何让计算机不需要明确的程序也具备学习能力”
传统编程方法
如果用传统编程技术来编写一个垃圾邮件过滤器,你会怎么做?
1、看看垃圾邮件长什么样。可能会注意到某些词汇出现的频率非常高,比如“免费”,“低息”,“抵押”等,也许还会发现一些其他模式。
2、为每个模式编写检测算法。
3、测试这个程序,不断重复1和2。

自动适应变化
*自动注意到新的关键词
*可以处理传统方法难以解决的问题,比如语音识别。

帮助人类学习
可以通过检视机器学习算法以了解它们学到了什么。
比如查看可以作为垃圾邮件最佳预判因子的词汇。
有时候,这可能会揭示出人类未曾意识到的关联性或是新趋势。
应用机器学习技术来挖掘数据,可以帮助我们发现此前并非显而易见的模式。这个过程称为数据挖掘。

机器学习分类
*监督式学习
*无监督式学习
*半监督式学习
*强化学习
监督式学习/无监督式学习
在监督式学习中,提供给算法的训练数据是经过标记的,相当于有了题目和答案,寻找解题过程。

无监督式学习的训练数据都是未经标记的。系统会在没有答案的情况下进行学习。
<

本文探讨了机器学习的概念,从传统编程方法对比到自动适应变化的能力,以及如何帮助人类学习。介绍了监督式、无监督式、半监督式和强化学习的分类,并详细讲解了线性回归、梯度下降法等重要概念。机器学习面临的主要挑战包括训练数据不足、代表性、质量问题,以及过度拟合和拟合不足等。文章以深度学习的发展为背景,展示了机器学习在各个领域的广泛应用。
最低0.47元/天 解锁文章
2817

被折叠的 条评论
为什么被折叠?



