机器学习,为什么如此重要?这篇文章带你走进人工智能!

本文探讨了机器学习的概念,从传统编程方法对比到自动适应变化的能力,以及如何帮助人类学习。介绍了监督式、无监督式、半监督式和强化学习的分类,并详细讲解了线性回归、梯度下降法等重要概念。机器学习面临的主要挑战包括训练数据不足、代表性、质量问题,以及过度拟合和拟合不足等。文章以深度学习的发展为背景,展示了机器学习在各个领域的广泛应用。

在介绍机器学习之前,首先我来给大家分享一篇划时代的论文,2006年,Geoffrey Hinton等人发表了一篇论文,展示了如何训练能够高精度(>98%)识别手写数字的深度神经网络。他们将这种技术称为“深度学习”。

在当时,深度神经网络的训练被普遍认为是不可能的。这篇论文重新激起了科学界的兴趣。不久之后,许多新的论文展示了深度学习不仅是可行的,而且能取得令人瞩目的成就。大数据、高性能硬件和新的算法,一同推动机器学习快速发展。

那么,什么是机器学习呢?

1959年Arthur Samuel将它定义为“机器学习研究如何让计算机不需要明确的程序也具备学习能力”

传统编程方法

如果用传统编程技术来编写一个垃圾邮件过滤器,你会怎么做?

1、看看垃圾邮件长什么样。可能会注意到某些词汇出现的频率非常高,比如“免费”,“低息”,“抵押”等,也许还会发现一些其他模式。

2、为每个模式编写检测算法。

3、测试这个程序,不断重复1和2。 

自动适应变化

*自动注意到新的关键词

*可以处理传统方法难以解决的问题,比如语音识别。

帮助人类学习

可以通过检视机器学习算法以了解它们学到了什么。

比如查看可以作为垃圾邮件最佳预判因子的词汇。

有时候,这可能会揭示出人类未曾意识到的关联性或是新趋势。

应用机器学习技术来挖掘数据,可以帮助我们发现此前并非显而易见的模式。这个过程称为数据挖掘。

机器学习分类

*监督式学习

*无监督式学习

*半监督式学习

*强化学习

监督式学习/无监督式学习

在监督式学习中,提供给算法的训练数据是经过标记的,相当于有了题目和答案,寻找解题过程。

无监督式学习的训练数据都是未经标记的。系统会在没有答案的情况下进行学习。

<

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值